

eCollect

100% electric Refuse Collection Vehicle

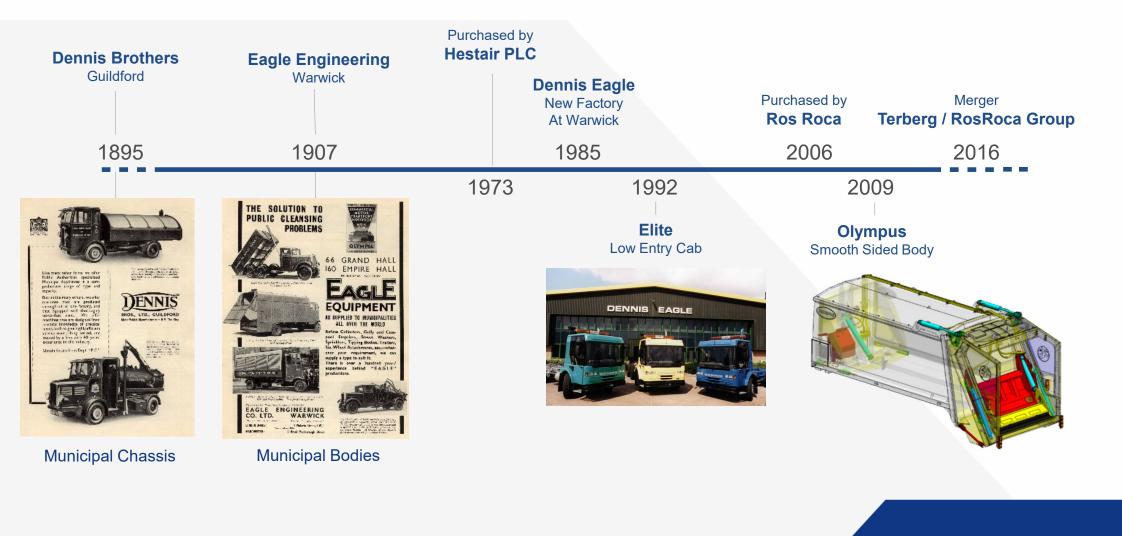
... delivering zero emissions collecting refuse ...

101211

DENNIS

-

WELCOME...


DENNIS EAGLE

Company History & Brief Overview

August - 2020

History

Group Manufacturing Sites – Terberg RosRoca Group

Company Organisation Charts

ENVIRONMENTAL EQUIPMENT

Video Overview

Video of manufacturing processes – excluded from final print

Contents

The challenges

Previous projects

Our solution: eCollect

Climate change

Air pollution

- Traffic plays key part
- Particularly in cities

83% of Londoners think tackling air pollution should be a priority

Clean Air Zones

- London
- Now has on-going RCV air quality monitoring
- Leeds
- Manchester
- Oxford
- Cambridge,
- Birmingham, etc. plan to adopt soon

Previous DE projects

- CNG/LNG
- Dual Fuel
- Electric body
- HiUCV

Innovative Group projects

- Electric terminal tractors
- Electric bin lifts
- Autonomous vehicles

Our project remit

Produce a vehicle to:

- Address environmental issues
- Be more efficient
- Cost-effective over its lifetime

"A genuine alternative to our diesel vehicles"

Only manufacturer in the WORLD to produce a complete eRCV

Principles of design

Use existing chassis, body and bin lift:

- Tried and tested
- Hugely popular
- Familiar

·····Ki

5-Star Direct Vision Standard rated cab

Direct Vision Standard

DVS star ratings and Safe System improvements

The Direct Vision Standard gives HGVs a star rating, measured by how much a driver can see directly through their cab windows. Safe System measures help reduce the danger of HGVs that don't meet the minimum star rating for an HGV Safety Permit.

- Meet the minimum DVS star rating
- An international standard
- Safe System measures: improving HGV safety
- Driver training
- Contact your manufacturer to find your vehicle's DVS star rating
- ▼ Vehicle exemptions

 Changes to LEZ emissions standards from 2021

We continue to work with vehicle manufacturers to assign star ratings for their vehicles. Check to see if we hold your star rating and apply. <u>Find information and guidance about the application process</u>.

Check star rating and apply

Meet the minimum DVS star rating

Deliveries in London

 (\star)

- Efficient deliveries
 Delivering safely
- Driving near vulnerable users
- Safer Lorry Scheme
- Work Related Road Risk
- Direct Vision Standard and HGV Safety
 Permit
- O DVS star ratings and Safe System improvements
- Guidance for the HGV Safety Permit
- o Direct Vision for HGVs Research and Tools
- Delivering legally
- Delivering goods by water

Integrated design & build

- Optimised assembly
- One-stop shop
- Tested & WVTA approved

A genuine alternative to our best selling RCV

- 26 tonnes
- 6x2 RS Elite chassis
- Olympus 19m3 body
- Terberg automatic split bin lift

Batteries and infrastructure

Battery capability & cost

- Battery chemistry improved
- Better power density
- Better stability

Increased range

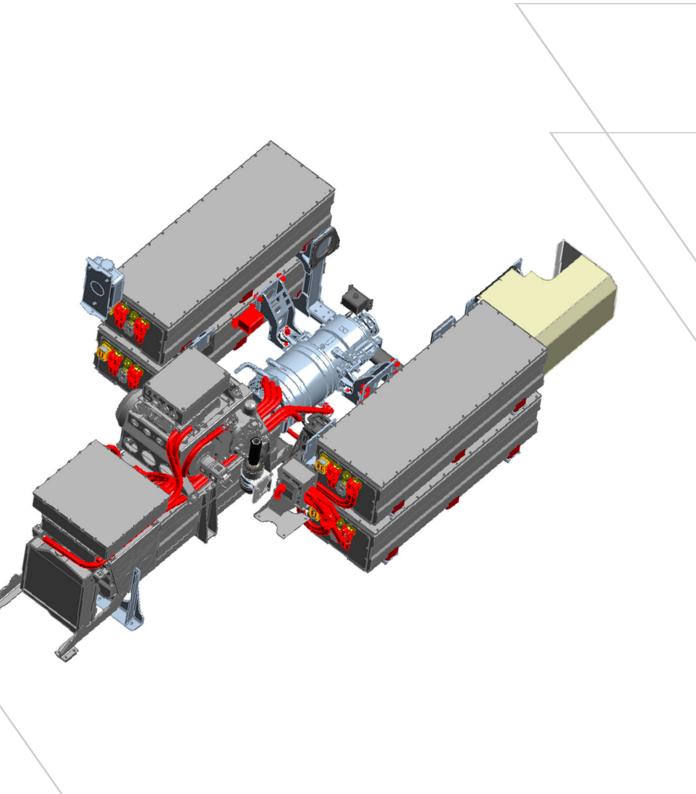
Increased payloads

Different routes

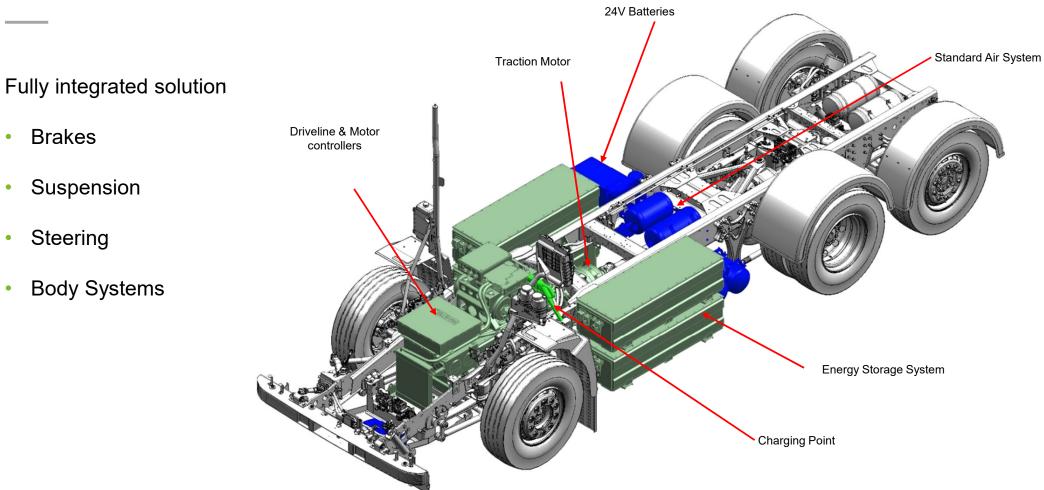

Duty cycle analysis

- Motive power
- Auxiliary equipment
- Compaction
- Discharge
- Operating Margins

File	Home Insert Draw Page	Layout Formulas Data	Review View H	elp Pc	wer Bl Acro	obat P	Power Pivot							🖻 Share	Com	mr
aste		11 → A [^] A [*] = = = 8	→ ab Wrap Text	Ge	neral	v .00 C	onditional Format as Cell rmatting ~ Table ~ Styles ~ Styles	Insert De	elete Format	∑ AutoSum ↓ Fill ~ � Clear ~	لا Z Sort 8	2 O & Find & > Select >	Ideas	Sensitivity	Check Compatib Centralized D	k ibili
3																
А	В	E	F		G	н	I	J	К		L	М	N	0	Р	
	Location	Approx cycle Power Consumption (kWh)	Peak Block Pressure (Bar)				Body Power Co	onsumptio		kimate Sy						
			()	0.14												
	Lambeth - West Norwood	0.063	54	0.14												
	Lambeth - West Norwood	0.078	121	0.12							•					
	Lambeth - West Norwood	0.093	150	0.11					•			y = 0.0002x +	0.0557			
	Lambeth - West Norwood	0.1	141	0.1						•						
	Lambeth - West Norwood	0.105	142							•				•		
	Lambeth - West Norwood	0.081	118	0.08			•				•			•		
	Lambeth - West Norwood	0.094	210						•							
	Lambeth - West Norwood	0.083	209	0.06			•	•								
	Lambeth - West Norwood	0.049	47				•									
	Lambeth - Clapham	0.083	65	0.04												
	Lambeth - Clapham	0.086	121													
	Lambeth - Clapham	0.12	157	0.02												
	Lambeth - Clapham	0.083	158													
	Lambeth - Clapham	0.071	115	0	0		50	100		150			200			2
	Lambeth - Clapham	0.065	99		0		50	100		150			200			-
	Lambeth - Clapham	0.115	130													
									Energy Consum							
	Controlled tests						2	43.33 48.75	0.12	8733333 0.58905						


The benefits of electricity as the alternative fuel

- Zero vehicle emissions
- Electricity is the cheapest energy produced in the UK vs oil based fuels
- Existing electricity infrastructure



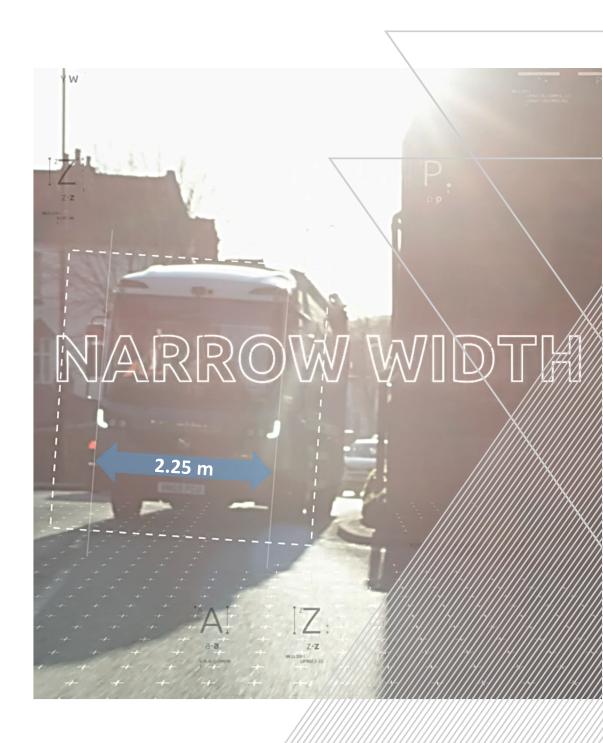
Battery & Motor

- Li-NCM batteries
- 5 packs in total = 300kWh
- 200kWh motor

All-new powertrain

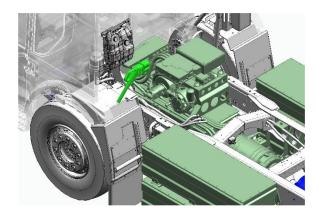
Battery capacity

- 300 kWh capacity
- 5 packs on the vehicle
- c. 385 kgs per pack



Narrow track – for urban rounds

Aimed at urban rounds, so we chose the narrow body and chassis which are that much quicker and easier to manoeuvre.


- 2.25 metre body width*
- Rear Steer wheel-plan

* standard 2.55m width will be available in the near future

Battery Management System

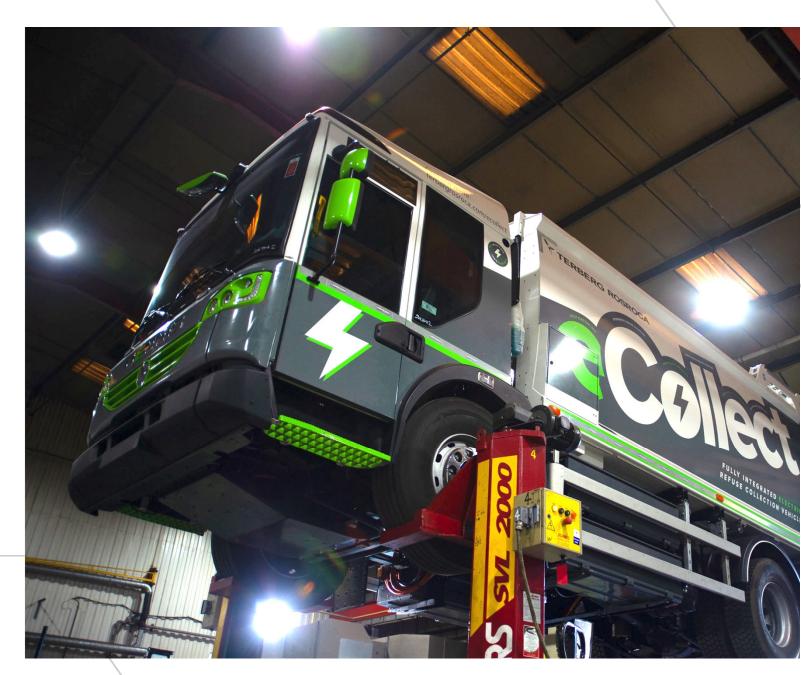
- Heart of the eRCV
- Monitors and controls battery packs
- Limits vehicle to 40mph

Operating the vehicle

- New instrument cluster
- New gear change pad
- New programmable switches

State of charge (SoC)

- Fuel gauge replaced by state of charge display
- Shown on cluster as a simple bar graphic
- Tortoise warning for 'return to base'

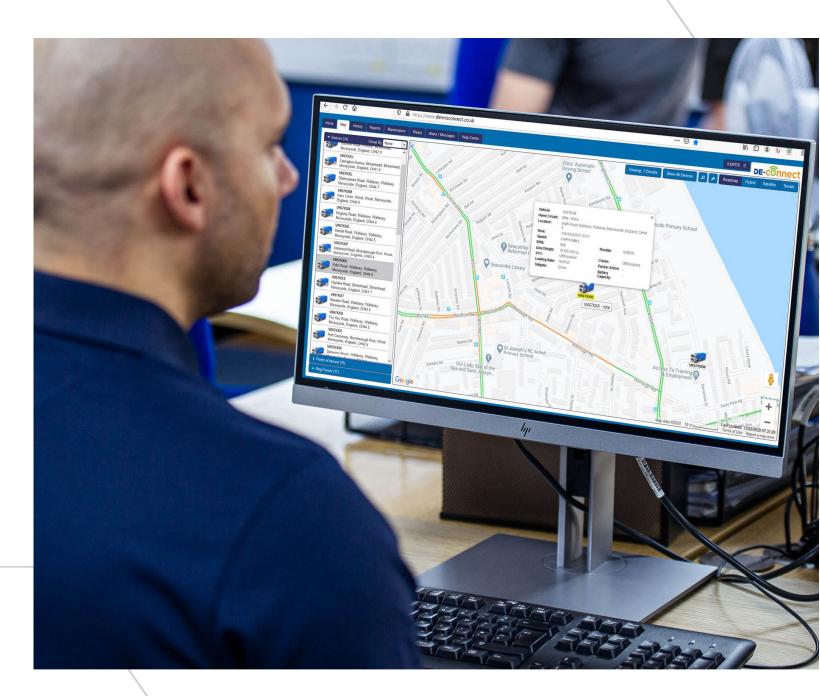

CCS2 Charging

- Industry standard charging
- Nominal 50 kW / 63 Amp
- 415V 3-phase

Maintenance & service

- Simpler servicing
- Fewer consumable parts
- Additional training for High Voltage systems
- Assured life-term support
- Fully illustrated EPC
- Full R&M contract support

EV Safety Equipment Kit


- Download available from the eCollect website
- Supply via our service network

Our Electric Vehicle Safety Equipment Kit has been designed to help create a safer working environment when working on the Dennis Eagle eCollect RCV.

DE-Connect telematics

- Standard on all vehicles
- Monitors vehicle health
- Adapted for eCollect

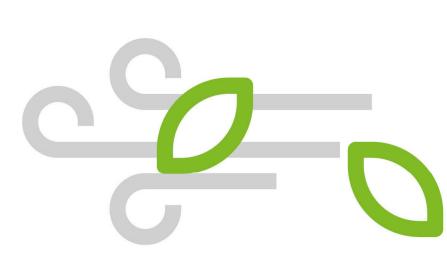
Warranty

- 3 years as standard
- Extended options available
- Same procedures

Cameras

- Optional 5 camera DVR recording system
- Linked to DE-Connect telematics

Why switch to an eRCV?


- Clean vehicles
- Better for the environment

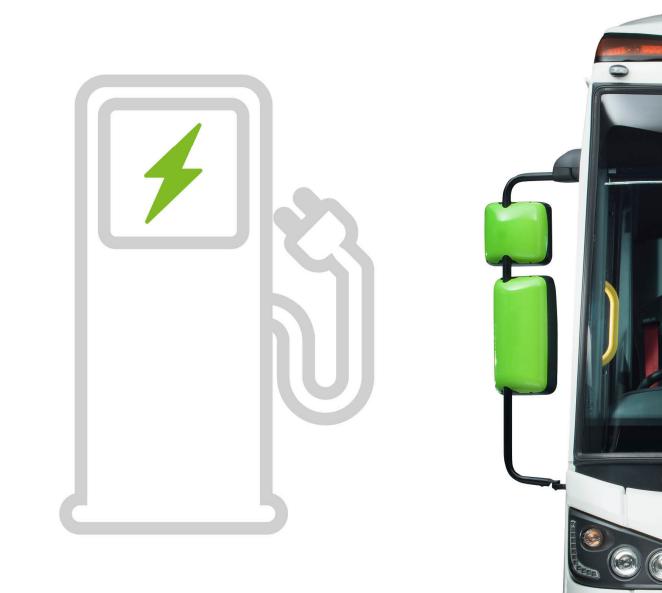
No air pollution

- Zero tail pipe emissions
- No impact on environment

Less noise


- Half as loud when packing*
- 16x quieter when idling
- Quieter when starting

* Bin movements and discharge into the hopper remain unchanged


Less maintenance

- Fewer moving parts
- NO engine oil change
- NO AdBlue (Urea)
- NO Diesel Particulate Filter

Quicker between stops

- Better acceleration
- Instant throttle response
- Shorter route times
- Relaxed driving experience

Field Trials

Sample data 13/01/20 Single Shift

Total Time 09:43:25 Hrs Driving Time 07:40:14 Hrs

Odo Distance 66.22 miles

Payload Round 1 = 11,140 Kgs Round 2 = 9,260 Kgs

Total = 20,400 Kgs

Final State of Charge 29% (c. 213 kWh consumed)

Henley-in-Arden

Wootton

Wawei

Mappleboroug

Studley

Green

Vorton Bagot

Claverdon

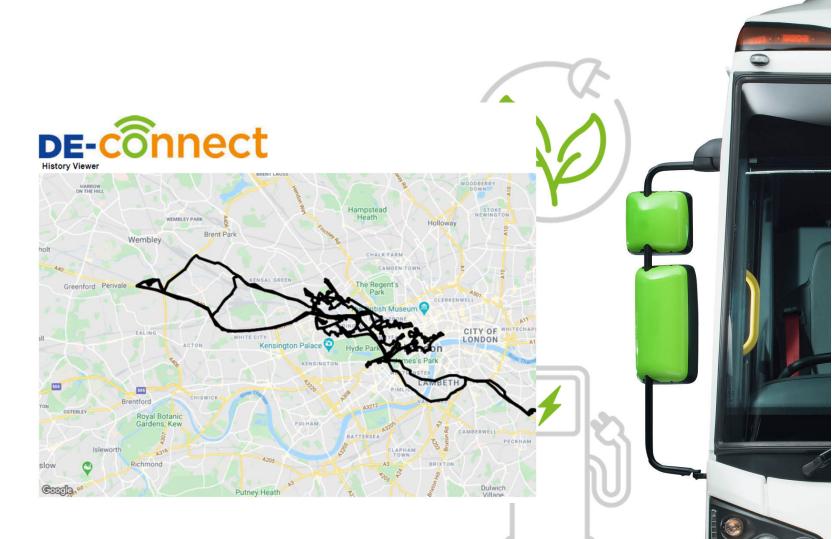
Budbroo

M40

Royal

Field Trials

Sample data 02/03/20 Double Shift


Total Time 17:41:43 Hrs Driving Time 12:14:36 Hrs

Odo Distance 85.71 miles

Payload Round 1 = 6,720 Kgs Round 2 = 6,000 Kgs

Total = 12,720 Kgs

Final State of Charge 17% (c. 249 kWh consumed)

Continuing duty cycle analysis

- Real-world data
- Assumption validation
- Basis for updates
- Optimisation

AutoSave 💽 🖪 ⁄ ֊ 🤍 👔	\$ ⊡ & ⊽	Copy of Bol	t Field Trials Body F	Power Consump	tion-2.xlsx 🔻	♀ Search			·	Graves, Andy GA 🖅 — 🗇
File Home Insert Draw	Page Layout	Formulas D	ata Review	View He	elp Power Bl	Acrobat	Power Pivot			🖻 Share 🛛 🖓 Comm
Paste Copy → Clipboard 5	 11 11 11 10 			Wrap Text Merge & Center	General		Conditional Format Formatting ~ Table Styles	as Cell	Insert Delete Format Cells	
$37 \bullet i \times \checkmark f_x$										
В	с	D	E	F	G	н		J	K L M N O	P Q R S
	Drive Efficiency	Average Drive Energy		MPG Equivalent	Ancillary Energy Per				Energy Recovered per Tonne	Overall Efficiency
Running Average	(kWh/km) 1.5	Regenerated 39%	(kWh/100km) 180.1	1 18.4	Tonne 8.0	Tonne (less Hea	ter) Per km 6.5 0.9	46%		300.3
Total Distance Analyzed	1335	1	Data Colour Key	10th %ile	50th %ile	90th %ile		€ 44%		§ 250.3
Total Distance Analysed		,					_	pa 42%	•	4 200.3
	Weekly Average		13/02/2020	14/02/2020	15/02/2020	16/02/2020		38%		× 150.3
Number of Rounds	1	1	2	1	1	1		A 36%		
Total Refuse Collected (kg)	9236	11200	16440	6140	4880	7520		B 34%	•	\$ 50.3
Total Drive Energy (kWh)	98	79.6	101.0	80.7	121.9	108.5		30%		e. 0.3
Regenerated Energy (kWh) Distance Travelled (km)	-40	-32.0 48.1	-40.7 63.1	-34.6	-53.5 77.2	-40.2	_	U	5000 10000 15000 20000 25000 Refuse Collected (KG)	б 0.0 20.0 40.0 60.0 80. Distance Tra
	51	69.6	63.4	52.9	33.9	35.5	ļ			
Ancillary Energy Consumption (kWh) Total Energy (Drive + Regen + Ancillary) (kWh)	109	117.2	123.7	99.0	102.3	103.9	_		Energy Recovered per KM	Overall Efficiency
Body Cycle Count per Day	444	1421.0	199.0	346.0	135.0	118.0		46%		25000
Heater Energy Consumption (kWh)		11210	10010	0.000	10010	1010	_	44%		20000
Drive Efficiency								(%) 42% -		<u>8</u> 20000
% Energy Recovered	0	40%	40%	43%	44%	37%		au 40%		9 15000
Drive Efficiency (kwh/km)	2	1.7	1.6	1.5	1.6	1.4		e Re	•	0 10000
Efficiency (kWh/100km)	179	243.7	195.9	187.2	132.5	136.9		A81-au 34%	•	Betro
L Diesel/100km Equivalent (based on 1L of Diesel Containing 10.722kWh Energy)	17	22.7	18.3	17.5	12.4	12.8		32%	•	ž 5000
2 MPG Equivalent	18	12.4	15.5	16.2	22.9	22.1		30% 0.0		0.0 50.0 100.0 150.
		Body Effic	iency						KM Travelled	Overall Efficiency
Ancillary Energy Per Tonne (kWh/T)	6	6.2	3.9	8.6	6.9	4.7				7
Ancillary Energy Per Tonne Less Heater (kWh/T)						7.0			Ancillary Energy(Less Heater) Per KG	Regen per
Ancillary Energy Per Body Cycle (kWh/Cycle)	0	0.0	0.3	0.2	0.3	0.3		<u>ت</u> 25000		€ -10.0
Ancillary Energy Per km (kWh/km)	1	1.4	1.0	1.0	0.4	0.5		(5) 20000	• •	€ -10.0 -20.0
Notes 8 9		High Body Cycle count, likely cause of poor efficiency						15000		40.0 C
Field Trials Data Drive	Air Compresso	r Duty Cycle He	ater Auxiliary S	Systems Bo	dy 🕂			: 4		

Questions

https://www.ecollectrcv.co.uk/