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FOREWORD

The design of machines elements involves consideration of:

e Kinematic function

e Strength

e Mechanical efficiency
e Required life

Friction and wear directly affect mechanical efficiency and may also undermine
kinematic function and strength to the point of premature failure. Wear directly limits
life at acceptable performance level.

Tribological considerations in machine element design are no less important than
considerations of kinematic function and strength.

Kinematics and strength are comprehensively covered as core subjects in the
education and training of engineers and scientists and are commonly addressed in the
practice of Engineering Design. The subject of Tribology is much more variably
covered and, in consequence, tribological considerations are often overlooked in the
subject of Design.

In view of its importance, the Tribology Group of the Institution of Mechanical
Engineers is anxious to encourage the inclusion of tribological considerations in the
practice of Design in the education of mechanical engineers. To this end, the Tribology
Group has prepared a collection of Tribological Design Guides to offer to students of
engineering in connection with their design studies. The hope is that, by making such
data readily available, awareness in tribological design will be encouraged. The data
presented will not, of itself, permit complete tribological design but references are
included to more comprehensive sources of data and detailed design procedures.

It is the hope of the Tribology Group that those involved with the education of
engineers and scientists will find it useful to reproduce this document for distribution to
students or for incorporation into their own in-house produced Design Data Handbooks.



INTRODUCTION - CONTACT STRESSES AND FAILURE

Tribology is the science of interacting surfaces in relative motion, it encompasses the
study of friction, wear, lubrication, and contact mechanics.

Engineering machinery frequently relies on the integrity of components with
interacting surfaces such as gears, bearings, or cams. Loads are often supported on a
small surface area of the component. Contact pressures and stresses therefore tend to
be high. The engineer needs to design the component to withstand these high contact
stresses. Excessive contact stress or deformation can lead to component failure by:

Overload: Components yield or fracture from excessive contact
loading.
Wear: Material removal from the surfaces by abrasion or local

welding of the surfaces.
Rolling Contact Fatigue: Cyclic contact stresses may cause fatigue crack initiation.
Seizure: Component surfaces local weld under high contact stress.
Loss of tolerance: By excessive deformation of the components.

We usually lubricate! the contacting surfaces in machinery. This lowers the likelihood
of direct contact between the surfaces and reduces wear or seizure problems. The
analysis of contact stress is frequently difficult. In this handbook a few simple
component geometries are considered. More complex component shapes frequently
require analysis by numerical methods.

1 part 2 in this series gives more detail on lubrication.



HERTZ THEORY OF ELASTIC CONTACT

When two curved bodies are brought into contact they initially contact at a single point
or along a line. With the smallest application of load elastic deformation occurs and
contact is made over a finite area. A method for determining the size of this region was
first described by Heinrich Hertz in 1881. He assumed:

e The size of the contact area is small compared with the size of the curved
bodies.

e Both contacting surfaces are smooth and frictionless.
e The gap, h between the undeformed surfaces may be approximated by an
expression of the form h = Ax? + By2 (e.g. the contact between spheres,

cylinders, and ellipsoids).

e The deformation is elastic and can be calculated by treating each body as an
elastic half spacez.

2 An elastic half space is the term given to a flat surface on an infinite elastic solid.



Contact of Parallel Cylinders and Spheres

When two cylinders or spheres are pushed together, the dimensions of the region of
contact can be determined using the expressions in Table 1. In both cases a relative
radius, R and a reduced modulus, E* are defined.

Figure 1: Schematic of cylinders (right) and spheres (left) in contact.

Table 1: Dimensions of the area of contact in line and circular point contacts.

Parallel Cylinder — Line Spheres - Circular Point
Contact Contact
Parameters Contact half-width, a Circle of radius, a
Load per unit width, P Applied load, P
Material Properties, K, v,, Material Properties, k,, v,
E,, v, E, v,
Contactradii, R, R, Contact radii, R, R,
Di i fth
imensions of the APR/ s |3pR!
contact a= a=
nE* 4E*

Relative radius of
curvature, R’

Reduced modulus3,
E *

Contact pressure
distribution, p

Mean contact
pressure, p,,

Max contact pressure,
Po

NOTE: The contact pressure distribution is elliptical with a maximum value of p,
at the axis of symmetry (x=0 or r=0). The contact pressure falls to zero
outside the area of contact.

3 The reduced modulus is sometimes defined in an alternative way (resulting in a valve twice that stated here).
Care should be taken when using other texts.




Figure 2: The pressure profile developed when two spheres or cylinders are pressed
together.

For the contact of a cylinder or sphere on a flat plane, set R, = co. These expressions
made be also be used for concave surfaces (e.g. hemispherical cup or a groove). R, and
R, are defined as negative for concave surfaces.

Contact Stress Distributions

The stresses at the surface (z = 0) and axis of symmetry (r = 0 or X = 0) developed in
line and circular point contact can be obtained using the expressions in Tables 2 and 3.
Stress distributions? are presented graphically in Figures 3, 4, and b.

Table 2: Stresses at the surface of line and circular point contacts (within the contact
region —1<x/a<lor—-1<r/a<l1.

Line Contact Point Contact
oy (1 —2v
Po 3

NOTE: The contact pressure is the negative of the axial stress at the surface i.e.
p(x) = —0,(x) or p(r) = — — 0,(1).

Table 2 gives surface stresses within the contact region only. For outside the contact
region:

Line Contact Point Contact
O'XZO'yZGZZO ﬁ:_ﬁ:(l_zu)<i>
Po Po 3r2

4 The stress ratio o/p, depends on Poisson’s ratio. For all plots a value u = 0.3 has been chosen.
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Figure 3: Stress distributions at the surface of line (left) and point (right) contacts.

-0.2 +

x/a, rla

Table 3: Stresses down the axis of line and circular point contacts.

Line Contact Point Contact

0

x _ 1{(a*—22z%)
T e A P R G L
<

VA

a
oy v ((1+a%+ 2z?%) Go . 22\
y__Y "y % _ _ — (%) tan-1 il
e % 1= () Q)+ (14

Oz _ —1 o, 1 22\ !
Po a?+22 pe- 2\!T=
NOTE: Along the z-axis O,, 0, and O, are principal stresses. The shear stress

along the z-axis, 0,, is thus zero.

The principal shear stress in the plane of deformation is given by:

1
v, = 2lo, — ol

The maximum shear stress occurs on the z-axis at a sub-surface location. This is the
location where first yield would occur if the Tresca criterion were exceeded.
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Figure 4: Stress distributions down the axis of line (left) and point (right) contacts.
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Figure b: Contours of shear stress beneath a circular point contact.




Example — A Sphere on a Flat Plate

A steel sphere of diameter 20 mm is loaded against a flat steel plate with a force of
100N. Determine the size and shape of the area of contact. What is the maximum
contact pressure?

Figure 6: A ball loaded onto a flat surface

First we determine the reduced modulus and effective radius:

1 1\
R’=< +—) = 10mm

10 ' o
pro (203, 1708 T 113.7GP
“\ " 207 207 = e /hrd

The region of contact will be circular with a radius given by:

= 0.19mm

3 3%x100x%x 10 x 103
4= T ax113.7 x 10°

The peak contact pressure is then given by:

3x100

= Ixmx (019 x 1032 _ -36Pa

Po



General Profiles - Elliptical Point Contact

If the two bodies pressed together have different radii of curvature along the co-
ordinate axes, the contact area is elliptical in shape as shown in Figure 7.

X
Figure 7: Contact between curved bodies of different radii along the x- and y- axes.

We define reduced radii along the x- and y- axes:

L_1, 1 1_t. 1 1_1,1
R, Ry Ry R, Ry Ry R R, Ry

Hertz analysis gives the semi-minor and semi-major axes of the contact ellipse:

_ 3[3k2EPR b 3EPR
a= nE* | mKE*

where Kk is the ellipticity parameter (k = a/b) and E is an elliptic integral of the second
kind. The elliptic integral may be obtained from tables of mathematical data.
Alternatively an approximate solution is given by:

R_\ 0-6360 0.5968R,
k = 1.0339 (—y) E=10003 + —=
Ry Ry

The pressure acting over the contact region has an elliptical distribution:

X2 y2 1/2
p(xy) = po{l _a_z_b_Z}

The peak and mean pressures are given by:

2po P

Pm="3"=

mtab
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NON-HERTZIAN CONTACT

Frequently it is not possible to make Hertz's assumptions; frictionless smooth surfaces,
elastic deformation, and parabolic surfaces. Contact mechanics under these conditions
becomes complex and we frequently must resort to numerical methods. This section
describes the trends observed when these assumptions are relaxed.

THE EFFECT OF FRICTION - SLIDING ELASTIC CONTACTS

In the normal Hertzian contact of curved bodies of the same material there is no relative
motion at the interface. Thus friction at the interface has no effect on the contact
pressure and stress distribution.

Consider a tangential force, Q applied to one of the contacting bodies, in addition to the
normal load, P. If Q < uP (where 1 is the coefficient of friction) then no incipient sliding
of the bodies will occur. The bodies will remain in static contact but regions of stick
and microslip are observed within the contact region.

If the tangential force is increased such that Q > pP then sliding will occur. The contact
stress distributions are now due to both pressure and frictional tractions.

Figure 8 shows the shear stresses (computed by numerical methods) beneath a sliding
contact where Q = 0.2P. For friction coefficients greater than 0.3 the location of the

maximum shear stress is at the surface.

x/a

2/a

3

Figure 8: Contours of shear stress beneath a sliding circular point contact, where Q =
0.2P.
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ONSET OF YIELD - PLASTIC CONTACT

The shear stress is at a maximum at a location subsurface (see Figure 5). The Tresca
yield criterion tells us that yield occurs when:

T =k=—-
max 2
where k is the yield stress in pure shear and Y is the yield stress in tension. Applying

this criterion gives expressions for the load and contact pressure at which first yield will
occur, as shown in Table 4.

Table 4: Threshold loads and pressures to cause first vield in line and circular point
contacts (according to the Tresca criterion).

Line Contact Point Contact

Maximum shear stress Tmax = 0.3pg Tmax = 0.31pg
Depth of maximum z = 0.78a z = 0.57a
shear stress
Load per unit length of nR(1.67)? m3R?

per unit teng _ TRA.67)7 p, = (1.60Y)3
load for first yield y E* Y T GE*2
Peak contact pressure (Po)y = 3.3k = 1.67Y (Po)y = 3.2k = 1.60Y
at first yield
NOTE: Contact pressures may be greater than the yield stress of the material

before yield occurs. This is because the state of stress is close to

hydrostatic.

Yield will occur initially at a location subsurface. The region of plasticity is initially
contained by an elastic region. If the load is increased further then the plastic region
grows. The state of ‘full plasticity’ is defined when the plastic region reaches the
surface.

The hardness test is a fully plastic indentation process. Empirically, the hardness, H
may be related to the material yield stress by H~= 2.7Y. So a useful rule of thumb is that
yield will occur when p,, > 0.4H.

To maximise load carrying capacity it is desirable to use materials with high yield
stress, low modulus, and to maximise the effective radius of the component’s
geometries. For example, ball bearings are manufactured from high carbon steel and
designed with a ball in a closely conforming groove.

12




SURFACE ROUGHNESS

Real engineering surfaces are rough on a microscopic scale. When two bodies come in
to contact, it is the peaks of the surface roughness (or asperities) which touch. Thus,
the real area of contact is significantly lower than the geometrical contact area (as
calculated using expressions like those in table 1). The rougher the surface the lower
the real area of contact and the higher the resulting contact stresses.

It is important therefore to design engineering components to a specified surface
roughness. The most common method for determining roughness is by using a surface
profilometer. A stylus is drawn at a uniform speed across the specimen surface. The
vertical movement of the stylus is measured, amplified, and recorded as an analogue
trace or stored on a digital computer. Figure 9 shows some surface roughness profiles.

500 pm

< >

YA e e VA

5pm

Figure 9: Profiles of the surface roughness from (top to bottom) polished, shot peened,
ground, and turned surfaces. Notice how the vertical magnification is much greater
than the horizontal magnification.

A number of parameters are available to quantify surface roughness. The most
common being the centre line average (CLA or R, value) and the root mean square
roughness (s or R,); defined from the height departure from the centre line.

i=n
Ri= Y lul o*
n .
i=1

Where n is the number of points sampled, and z, is the height of the roughness at point
1 above a datum. Table b gives some typical values of the R, roughness.

i=

I
SR
= =]
N

i=

It is also important to characterise the spatial variation (i.e. a measure of the separation
of surface peaks and valleys) in roughness as well as the height variation. Definition of
the mean slope, 0, and the mean curvature, ok can be used:

13
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where d is the sampling interval.

._.
1l
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Profiles may be filtered, either digitally of electronically, to remove long or short
wavelengths. Typically the values of the roughness parameters depend strongly on the
profile filtering.

Table b: Typical surface roughness values of some machined surfaces.

Surface R,, pm
Ball bearing surface 0.01
Lapped surface 0.05-04
Ground surface 01-15
Die cast surface 1-15
Cold rolled 1-3
Milled surface 1-6
Sand cast 10-20
Flame cut surface 10-50
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CONTACT OF ROUGH SURFACES

When two spheres with rough surfaces are pressed together the rough interface acts
like a compliant layer. The higher asperity peaks outside the nominal ‘Hertzian’
contact area will come into contact. Thus, the region of micro-contacts will extend
beyond that predicted by smooth surface analysis (i.e. the equations in Table 1), and
the peak contact pressure is reduced. For a random rough surface the probability of
contact decreases remote from the contact centre. It is difficult to precisely define the
boundary of this extended contact area.

An effective radius, a* is usually given where the effective pressure has fallen below
some threshold. The ratio of this effective radius to the Hertzian contact radius
depends on the parameter, 0 which is the ratio of the combined surface roughness to
the bulk compression of the spheres.

o  3|16RE*?
— =0 —
8 9p2

(04

For smooth lightly loaded surface, then the Hertzian smooth surface anlysis gives
acceptable accuracy. For rougher surfaces are more highly loaded cases than some
alternative numerical method must be used:

For0<a<0.1 1<a—<1.1
a

*

For0l<a<1 1.1<a—<1.5
a

15



EDGE CONTACT - FLAT PUNCHES AND WEDGE INDENTERS

If one of the contacting bodies has a surface profile which is discontinuous we expect a
stress concentration to exist. For example Figure 8 shows the contact pressures
developed when a rigid punch and a rigid wedge are pressed against an elastic® half-

space.
P

p(x)
/T "
Z

Figure 8: Typical contact pressures and deformations developed when a flat punch (left)
and a wedge (right) are pressed onto an elastic half-space.

T\L

a——«——a

Many contact applications will consist of surfaces which cannot be approximated as
parabolic. For complex shapes it may be necessary to resort to numerical methods. A
commeon approach is to discretise the surfaces into a series of elements over which a
constant pressure acts. The deflection of the surface caused by each of these pressure
elements is then determined from elastic half-space relations. Iteration is performed
until boundary conditions (zero pressure outside the contact and the two surfaces
touching within the contact) are satisfied.

> In practice these infinite stresses will not exist. Yield will occur at the stress concentration.

16



CONMNMON ENGINEERING CONTACT APPLICATIONS
Gears

Meshing gear teeth are subjected to bending stresses and contact stresses. The later,
for simple spur gear geometries contacting at the pitch diameter, may be determined
approximately from the analysis of two equivalent cylinders in line contact.

The radii of the equivalent cylinders are determined from the geometry of the involute
tooth profile as shown in Figure 9.

Base diameter, d,, Pitch diameter, d,,

Base diameter, d,;

Pitch diameter, d,,;
Figure 9: Section of gears meshing at the pitch diameter.

The radii of curvature, R, and R,, at the pitch point are determined from the gear base
circle diameter, db and the working pressure angle a. So:

dp; tana

dy, tan a
R, = . _ Op2

R, =
2 2

Where dp is the gear pitch circle diameter. The contact load per unit width, P acting
normal to the contact, is determined from the torque, T transmitted by the gears. If the
gear teeth have a width, w then:

2T, 2T,

P= =
dpywcosa  dy,wcosa

The appropriate values of R,, R, and P are then used in the Hertz relations in Table 1 to
determine the geometry of the contact and associated stresses.

A similar analysis can be applied to helical gear teeth. The geometry of a pitch ellipse

must be used to determine the radius of the equivalent cylinders. Load sharing
between teeth may also need to be considered.

17



Ball Bearings

Ball bearings® are common examples of elliptical point contact. The rolling element is
loaded against the conforming grooves in the inner and outer raceways.

Figure 10: Sketch of the contact between the ball and the outer raceway in a ball
bearing.

For a radially loaded ball bearing the contact between the ball and either the inner or
outer raceway will be elliptical. The radii are readily obtained from the ball bearing
geometry (ball radius, groove radius, and radius of the contact track). The load carried
by a rolling bearing is distributed amongst the individual balls. For a bearing
containing z balls carrying a radial load F, the maximum load on the ball, P (located
diametrically opposite the loading point) is approximated by:

This load and the contact radii can then be used in the expressions for elliptical point
contact to determine the contact area and stresses.

Example

A deep groove ball bearing contains seven balls of diameter 12.7mm. The outer ring
has a groove radius of 6.60mm and the diameter of the contact track is 77.8mm. If the
bearing carries a radial load of 6.23N determine the maximum contact pressure in the
ball outer race contact.

First we determine the relative radii and the reduced modulus:

Re= (et o) = (ot ) =759
*“\R, "R,y  \635 —3g9) =~ /~°mm

R (R R T N
Y “\Ry Ry 635 —660/ o o

6 part 5 contains further details on the design and selection of rolling bearings.
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- ~\759 " 1676/ ~ 0T

oo (Lovi, 1 - 1-03 1-03 1aep
“\7E, E, —\ 207 207 it

The maximum load on a ball is given by:

5F 5x6.23
P=—=———=445N
y/ 7

Approximations for the elliptic integral and the ellipticity parameter are made:

R 0.6360 167 6 0.6360
_ Ry _ 167.6 _
k = 1.0339 (Rx) 1.0339( g ) 7.40
L0003 o O5908Rs _ oo 05968x7.59
- R, 1676

We can then determine the semi-major and semi-minor axes of the contact ellipse.

_ ?[BICEPR _ 2|3 x 7.402 x 1.027 x 445 X 000726 _ -
A= ThEr T X 113.7 X 10° - Defomm

b = 0.0335mm
The maximum contact pressure is then:

_ 3P 3 X 4.45
" 2mab 2 X T x 0.248 x 0.0335 x 10~6

Po = 0.26GPa
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