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Abstract 
 

  Robots are vital to the functioning and automation of many modern processes. Many of 

these robots are only able to perform their functions within the environments designed 

around them. A better approach may be a robot designed around its environment Instead. 

As most environments are already designed for bipedal humans, bipedal robots are 

uniquely poised to fill this niche. Therefore, this report aims to explore and develop a 

bipedal robot capable of semi-autonomous walking. 

  A review of the literature surrounding bipedal robotics is performed and finds that bird-

based configurations may provide a better basis for the development of bipedal platforms 

compared to human-based approaches due to lower centres of mass providing better 

stability.  

  Pavo, a 30cm tall robot inspired by the common quail (Coturnix Coturnix) is built with off-

the-shelf parts and 3D printing to reduce weight and costs. A novel control theory utilising 

fuzzy logic is developed and implemented to reduce the computational power required. An 

Arduino UNO is used to realise this control theory and execute the dynamic footsteps 

required to enact balanced walking. 

  Various complications are encountered throughout its development and are remedied or 

future improvements suggested. Issues such as underpowered servos prevented a faithful 

recreation of a quail gait cycle and full realisation of the fuzzy logic system. However, Pavo 

is still able to demonstrate appropriate responses to external stimuli and ultimately shuffle 

forward at a speed of 29.371mm/s.  
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1. Introduction 

  The field of robotics has seen great strides in the past century. With the concept of useful 

man-made automata jumping from the pages of early 20th-century science fiction into very 

real, practical applications today (Carlos De Pina Filho and dos Santos Mota 2010). 

Robots, in all their current forms, are ubiquitous in modern society, bringing unprecedented 

automation into countless industries such as the automotive sector (Bartoš et al. 2021).  

  A vital aspect of many of these robots is their mobility, such as to navigate a factory floor 

or warehouse. In most industrial applications, these robots have been developed in 

tandem with the environment they operate in, with their surroundings fitted with flat floors, 

tracks, markers, etc. Such as seen in Figure 1; a highly automated packing warehouse 

where neither wheeled robot nor environment can be used independently.  

 

Figure 1: An Ocado “swarm” packing warehouse with wheeled robots (Grylls 2018) 

  While systems such as these have been implemented with great success, they require 

large investments, long construction times, and must be fully conceptualised from an early 

stage of development. These highly-specialised robots are limited to the environments 

designed around them, and will never be employed in the countless pre-existing 

environments designed around humans. 

  It may then be argued that robots designed around their environments instead would be 

a more suitable approach, providing backwards compatibility that allows them to be readily 

integrated into existing environments designed around bipedal humans. 

  Therefore, a mobility solution that satisfies this design philosophy is bipedal robots. 

Sufficiently advanced, bipedal robots can navigate the majority of environments that 



Ryan Khoo Yeap Hong 

11 
 

humans currently operate in, doing so better than wheeled, threaded or even quadrupedal 

robots. They are able to, for example, climb stairs, and navigate uneven surfaces and tight 

areas that other mobility solutions cannot. 

 

1.1. History and Literature Review 

  To design bipedal robots, it is beneficial to first study and understand how this form of 

movement is achieved in nature. Bipedalism in nature has been finetuned over millennia 

to suit a specific organism’s needs and environments, be it for improved energy efficiency, 

reaching higher places or freeing up other appendages for flying/tool-use, this provides a 

strong foundation for engineers to develop upon (Hunt 2015; Lepora et al. 2016). 

  The first, most obvious organism to study for the development of bipedal robots would be 

ourselves; Homo Sapiens. Much work has been done breaking down and classifying the 

various movement patterns of a generic human gait (Vaughan 2003). Many styles of 

movement such as running or skipping can be achieved with this bipedal configuration. 

However, this report will place a primary focus on walking as it is a logical starting point for 

the development of bipedal robots. 

  Walking is defined by Linden (2011) as “a repetitious sequence of limb motions to 

simultaneously move the body forward while also maintaining stance stability” (van der 

Linden 2011). A human walking cycle can be viewed as a series of motions punctuated by 

distinct stages/positionings. Muscles use energy to both reposition the components of the 

legs and accelerate/decelerate the masses involved (Hunt 2015). It is also important to 

note that while each cycle is repetitive and similar, they are not the same in practice, with 

minute adjustments applied to each step to maintain the system and avoid falling. The 

human walk cycle can be broken down into two distinct stages; the stance and swing 

stages, as can be seen in Figure 2 below by Lohman, Balan Sackiriyas, and Swen (2011). 
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Figure 2: A breakdown of the human walking gait (Lohman et al. 2011) 

  Beginning with both feet in contact with the ground, known as double limb support (DS), 

the “stance” stage encompasses the motions from initial DS, swinging a foot forward, and 

resuming DS on contact with the ground. The “swing” phase then begins upon single limb 

support (SS) once the other foot leaves the ground, and ends upon the re-establishing of 

DS, this then begins a new “stance” stage and the cycle is repeated (Liu, Chen, and Chen 

2019; Lohman et al. 2011). 

  When considering the dynamics of the entire system during this cycle, it exhibits 

properties similar to that of an inverted pendulum (Hunt 2015), which systems of bipedal 

robot control can be based upon (Liu and Qian 2019), further discussed in this section 

below. 

  As discussed in the introduction, bipedal robots have been in the collective 

consciousness of scientists and researchers for many decades (Carlos De Pina Filho et 

al. 2010). However, bipedal robotics as we know it today only began development in 

earnest in the late 1960s, with studies by researchers such as R.B. McGee beginning work 

on theories of legged locomotion and algorithms capable of coordinating leg movements 

(McGhee 1968). Completed in 1973, the WABOT-1, a 1.5-meter-tall robot by Japan-based 

Waseda University was developed (seen in Figure 3), capable of emulating a pre-

programmed human gait, and is generally regarded as the first modern bipedal robot 

(Bruemmer and Swinson 2003; Takanishi 2019; Vaughan 2003).  
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Figure 3: “WABOT-1” Bipedal robot by Waseda University (Takanishi 2019) 

  Since then, substantial progress has been made in the development of bipedal robots, 

culminating in the present state of the art, with robots such as Boston Dynamics’ Atlas and 

Agility Robotics’ Cassie bipeds (Figure 4) showcasing some of the most sophisticated 

implementations of bipedal robots thus far. Despite the tremendous work that has been 

done, the field is far from stagnation and may still be considered relatively new (Ficht and 

Behnke 2021; Liu et al. 2019). 
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Figure 4: Left) Boston Dynamics’ “Atlas”, right) Agility Robotics’ “Cassie” (Ficht and Behnke 2021; Reher, 

Ma, and Ames 2019) 

  While more challenging to develop and control, there is sufficient incentive behind the 

development of these machines. As discussed above, a primary motivation is that bipedal 

robots are potentially better suited to traverse terrain that more traditional movement 

solutions such as wheels or threads cannot (Warnakulasooriya et al. 2012). Sufficiently 

developed, bipedal robots would be able to traverse both natural and urban, human-centric 

environments far more efficiently than any traditional solution. This advantage would 

manifest itself in meaningful applications such as in hospitals, emergency response, 

replacing humans in dangerous tasks or monitoring locations far from human habitation 

(Carlos and Pina 2010; Liu et al. 2019; Xie et al. 2020). Bipedal robots may also find a 

place in the domestic/civilian markets, with implementations such as entertainment, 

delivery, waiting/hotel staff, and medical/household helpers. Developments in the field may 

even find their way into other industries such as medical exo-skeletal aids (Aithal et al. 

2021; Liu et al. 2019; Reis et al. 2020). 
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  Many different configurations have been utilised to create bipedal robots, with the 

average speed and size of platforms increasing over the years as underlying technologies 

constantly improve, enabling bigger, better robots to be constructed. Some designs only 

incorporate legs, while others emulate entire humanoid forms. These robots also vary in 

their use of biomimicry, with some utilising the bare minimum degrees of freedom (DoFs) 

to realise bipedal movement, while others attempt to rival the whopping 30 DoFs present 

in a single human leg (Aithal et al. 2021; Xie et al. 2020).  

  Among the most important components in these robots are their actuators. Many 

solutions exist and have been implemented. In earlier years, electrical actuators with high 

ratio reducers were a common choice, offering a good balance between speed, torque and 

size. As the field progressed and compliance increasingly deemed an important aspect of 

bipedal robots (compliance further discussed below), alternative solutions such as series 

elastic actuators (SEAs) were utilised in robots such as NASA’s Valkyrie platform. Other 

solutions have also been employed such as geared brushless DC (BLDC) motors for their 

small form factor and ability to provide torque feedback via current sensing. These mostly 

electrical solutions are however not perfect, being susceptible to overheating and other 

issues. Where these were deemed too detrimental, hydraulics has also been implemented 

into bipedal systems and has seen success in implementations such as Boston Dynamics’ 

Atlas line, although not without their drawbacks such as leaks, noise and weight (Ficht and 

Behnke 2021). 

  Just as important are the feedback systems in place to allow for the system to respond 

to and interact with its environments. A vital sensory component found in the majority of 

bipedal robots is the inertial measurement unit (IMU), providing acceleration, position and 

gyroscopic feedback to allow the system to predict its trajectories and compensate 

accordingly to prevent falls. Another common feedback utilised is joint positioning data, 

allowing the system to know exactly how it is configured at any one time, this data may be 

gathered via highly accurate encoders or more traditional potentiometer-based solutions. 

Other more niche forms of feedback are utilised by select robots, such as light detection 

and ranging (LIDAR) systems or camera systems like those used in Honda’s ASIMO 

(Carlos De Pina Filho et al. 2010; Ficht and Behnke 2021). 

  The materials and manufacturing of these robots are also important. With common design 

requirements such as high strength and low weight, metal alloys are commonly used. 

These bipedal research platforms are highly unique and usually produced at low volume, 

therefore, manufacturing methods such as computer numerical control (CNC) milling and 

3D printing are also commonly utilised. Recent 3D printing developments have made it a 

particularly well-suited manufacturing method for these highly specialised applications, 

enabling high complexity with no extra cost, and reducing the start-up/tooling costs 
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characteristic of more traditional manufacturing methods. Components are also 

increasingly being bought off-the-shelf to decrease costs, such as in the NimbRo-OP2X 

robot, where off-the-shelf servos were utilised with 3D printing (pictured in Figure 5) to 

achieve a low cost compared to the prohibitively high prices of most bipedal robot research 

platforms (Ficht et al. 2018; Ficht and Behnke 2021). 

  

Figure 5: Left) The NimbRo-OP2X robot, Right) Off-the-shelf servos in a 3D printed assembly make up the 

robot’s hip joints (Ficht et al. 2018) 

  Compliance in bipedal designs is becoming increasingly important as more research is 

conducted. Components such as springs and pulleys decrease forces and torque spikes 

on joints and store energy much like ligaments and tendons do in living organisms (Rajput 

et al. 2021), they have been researched/implemented in projects such as in Badri-Spröwitz 

et al. (2022), Maiorino and Muscolo (2020), Park et al. (2011) and Tsagarakis et al. (2017). 

  Throughout the years, many control strategies have been developed. As mentioned 

above, one of the oldest and most pervasive control theories in the field are models like 

the spring-loaded inverted pendulum (SLIP) method based on the simplification of the 

robot into a single inverted pendulum pivoting about a zero-moment-point (ZMP) or centre-

of-pressure (CoP), as used by Nguyen et al. (2020), Bae and Oh (2018), Chang et al. 

(2020) and Lin et al. (2021). These control theories have also been improved and built 

upon, such as adding a damping aspect or considering a double inverted pendulum as a 

better approximation of a full humanoid configuration, but an issue remains; a complex 
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real-world robot cannot be reliably simplified into something as abstract and simplistic as 

a pendulum about a perfect pivot point. 

  This has been identified and calls for a different approach, a “model-free control design” 

have been made (Hu and Smith 2000). While there have been a few approaches 

developed based on this model free design, in this report, a novel fuzzy logic-based 

approach was considered. 

  Fuzzy logic allows the processing of data that would not otherwise be feasible with more 

traditional control methods. It does this in a much more naturalistic way, mimicking human 

cognition (Singh et al. 2013). The theory is based on relative membership functions, where 

“crisp”, numerical inputs are “fuzzified” into fuzzy variables via set membership functions 

and used in an intuitive inference system that manipulates the variables according to a set 

of human-comprehensible rules. These fuzzy outputs are then “defuzzified” by output 

membership functions and return a usable numerical output (Douglas 2021; Zadeh 1965), 

further detailed in section 3.3 below. 

  Humans are not the only bipedal organisms to inhabit the earth, more than then-thousand 

species of bird, and by extension, another ten thousand of their extinct theropod ancestors 

are bipedal (Brusatte, O’Connor, and Jarvis 2015; Lepora et al. 2016). The earliest signs 

of bipedalism in mammals may be placed at 3.7 million years ago, with fossilised hominid 

footprint patterns and fossils such as the A. afarensis “Lucy” strongly indicative of 

mammalian bipedalism. (Finlayson 2005; Hunt 2015; Vaughan 2003). However, the fossil 

record also contains specimens displaying bipedalism in birds, with fossils such as the 

Archaeopteryx and various small bipedal theropods dated over 150-200 million years ago. 

This 150-million-year evolutionary lead may very well have resulted in musculoskeletal 

configurations better suited for bipedalism (Brusatte et al. 2015; Ksepka 2022; Lepora et 

al. 2016). 

  With this in mind, emphasis is placed on alternative, non-human gaits and designs. Birds 

are incredibly varied and exhibit many different forms of bipedal movement such as 

hopping, striding, running and skipping. However, the walking gait of a quail (Coturnix 

Coturnix) is reviewed as quails tend to fly less and are more well-adapted for walking than 

most birds (Abourachid et al. 2011), this can be seen in Figure 6. 
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Figure 6: A full gait cycle of a common quail, experimentally obtained by Abourachid et al. (2011) utilising 

high-speed video fluoroscopic recordings  

  From Figure 6, it can be seen that when analysed in the same way as a human gait cycle 

(as in Figure 2), the gait patterns are near identical, with a stance phase difference of only 

1% of a total cycle; a potential example of evolutionary convergence. The only remaining 

difference is therefore the characteristic “crouched” build of birds resulting in a much lower 

CoM and improved inherent stability over that of a walking human as concluded by Lepora 

et al. (2016) and Andrada et al. (2014).  
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1.2. Project Aims and Objectives 

  Against this background, the project aims to develop a walking robot designed around 

human environments by utilising a quail-based bipedal configuration. A complex 

engineering problem such as this comprises many facets. Therefore, the objective of the 

project is to test and fulfil the following design specifications that the above aim may be 

divided into: 

• To build and manufacture a lightweight, robust bipedal robot whose design 

balances biomimicry and practicality. 

• To develop and code a reliable control system capable of generating dynamic, 

adaptive footsteps to drive the servos on the robot and enable walking. 

• To ensure a strong foundation is designed, both for the code and physical 

components that allow for upgradability and future developments. 

• To explore the use and implementation of a lightweight control theory approach 

using fuzzy logic to replace traditional, more computationally expensive control 

theories. 

• To build the robot with components totalling under approximately £100. 
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2. Design and Building 

2.1. Design Background 

  Based on the literature above, an avian-inspired design was ultimately utilised based on 

the measurements and configuration of a common quail (Coturnix Coturnix) recorded by 

Lepora et al. (2016) and supplemented by Nyakatura et al. (2012). These measurements 

informed the relative distances between joints and the overall configuration of components. 

  This was implemented in the form of a central “spine” assembly, suspended between the 

legs meant to represent the mass of all non-leg parts of the quail, it can be manipulated 

via servos and houses the Arduino, Bluetooth communication module, ultrasonic sensor, 

and batteries. This system, independent of the legs, aims to allow Pavo to balance and 

counteract disturbances resulting from leg swings. 

  To minimise costs, the minimum number of actuators required to realise an approximation 

of the quail walking cycle (in Figure 6 above) is utilised. Two axes of movement are present 

at the hip, one across the sagittal plane, and one across the frontal plane. The knee joint 

is allowed to pivot in the sagittal plane and three servos were utilised to manipulate the 

spine relative to the rest of the body, allowing it to pitch up and down, roll side to side, and 

yaw left and right. This resulted in nine total DoFs, requiring nine servos. This configuration 

can be seen in Figure 7 below. The servos utilised have relatively low torque outputs, 

resulting in size and weight limitations further detailed in sections 2.3 and 4.2 below. 
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Figure 7: A DoF diagram illustrating the placements of the servos with a centre “spine” (in red) suspended 

between the two legs. Lengths obtained by Lepora et al. (2016) and planes of movement possible for each 

servo labelled 

  This approximation of a quail’s skeletal configuration notably removes the active 

actuation of the joint connecting the tibiotarsus and tarsometatarsus (the ankle joint). This 

was replaced with a passive damped spring to reduce bounce during steps.  

  Despite not being utilised for calculations/modelling, a representation of the equivalent 

system during a single support phase can be seen in Figure 8 below to illustrate the 

simplification utilised in more traditional control theories, a far cry from the complexity of 

the system seen in Figure 7. 

 

Figure 8: The simplified damped spring inverted pendulum model with pivot point and CoM labelled 
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  As in the abstract, the robot has been named “Pavo”, a homage to the “Pavoninae” 

subfamily of birds to which the quail belongs, and will be referred to as such for the 

remainder of the report. 

 

2.2. Hardware/Components 

  Many off-the-shelf parts were utilised in the construction of Pavo as they lower costs and 

reduce the time and work required to build the robot, these components are described 

below (Carlos De Pina Filho et al. 2010; Ficht and Behnke 2021). 

  Two processor solutions were considered (an Arduino-style microprocessor and a 

Raspberry pi computer) as they were both adequately sized (seen in Figure 9) and deemed 

capable of performing the tasks required. These were compared, and the Arduino UNO 

was ultimately chosen for the following reasons: 

 - Simpler to code and implement 

 - Near-instant start-up and power down 

 - Raspberry Pi computational power was deemed excessive for the use case 

 - Arduinos are more power-efficient 

 - Arduinos style boards are generally cheaper 

 

Figure 9: a) An Arduino UNO, b) A Raspberry Pi (Carolo 2020) 

  In addition to the Arduino UNO processor, various other notable components were 

utilised in the construction of Pavo, such as Bluetooth modules to facilitate wireless 

communication between the controller and the onboard Arduino to prevent a wire tether 

from interfering with Pavo’s movements. These can be seen in Figure 10 below.  

a) b) 
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Figure 10: a) Adafruit PCA9685 16-Channel Servo Driver (Earl 2012), b) Adafruit TDK InvenSense ICM-

20948 9-DoF IMU (Siepert 2020), c) SER0056 Servo, d) HC-SR04 ultrasonic distance sensor, e) Nintendo 

“nunchuck” controller, f) Spring damper suspension, g) HC-05 Bluetooth serial transceiver module 

  This resulted in Pavo costing just over £120. A detailed breakdown of cost, with 

specifications and sources for each component, can be found in the appendix (A.2) along 

with a full list of software utilised in the project (A.3). 

 

2.3. Manufacture Details and Specifications 

  With these components and design parameters in mind, the full robot was designed in 

Autodesk Fusion 360 and tested with virtual joints to ensure components would not collide 

during its operation. An engineering assembly drawing for Pavo can be found in the 

appendix (A.9). The final design can be seen in Figure 11 below. 

a) b) c) 

d) e) 

f) 
g) 
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Figure 11: a) overall view of Pavo with the axis sign conventions utilised in the remaining report, b) Front 

view of Pavo, c) Top view of Pavo, d) Side view of Pavo 

  The robot was built around its components and was kept small to give the servos the best 

possible chance of functioning well. This resulted in a scale of 2.5:1 relative to the quail 

measurements utilised. Pavo is approximately 31cm tall, 21cm wide and 44cm long. The 

final physical product can be seen in Figure 12. 

X Y 

Z 

a) b) 

c) d) 
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Figure 12: A side view of the finished robot 

  It was decided early on in the design process that 3D printing would be the main mode 

of manufacture, it was chosen for its relatively lower costs, quick turnaround, ability to 

create high complexity parts, and lower weight materials (Polylactic Acid, PLA plastic was 

utilised for its rigidity). These parts were fastened together with assorted nuts and bolts. 

Two notable non-3D printed structures include the thighs and spine. The thighs were laser 

cut from 3mm acrylic as they did not require the complex mounting points that other parts 

required 3D printing to achieve. The spine is comprised of two 23cm long 5mm threaded 

rods as these two sections were simple but load-bearing, likely requiring thick plastic that 

would have dramatically increased weight. 

  The components were assembled and electronics installed. A labelled circuit diagram of 

the electronics onboard can be seen in Figure 13. 
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Figure 13: A labelled circuit diagram illustrating the connections between components onboard Pavo 

  Notable design features and their motivations are as follows: 

  Pavo’s “head” can be seen in Figure 14 below. It is mounted to the 5mm threaded rod 

and is secured between two nuts. The head assembly is made of three 3D printed parts; 

the front plate housing to mount and protect the ultrasonic sensor from damage, the top 

rail to provide structural support to the assembly and provide guides for the wires, and the 

main plate to house the Arduino and attach the assembly onto the threaded rod. 

 

Figure 14: The “head” of Pavo  
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  The hip assembly, representing the pelvis of the quail, houses three servos, the servo 

driver and the onboard IMU which are mounted securely to the 3D printed piece. As all the 

servo wires are routed to this area, a hole and cavity were designed into the piece to both 

save weight and provide an area for excess wires to be organised. A wire guide was also 

installed at the top of the hip assembly to secure the central servo and provide a guide for 

the wires from the three spine servos. 

 

Figure 15: a) A top view of the hip, embedded IMU and servo driver b) A bottom view of the hip 

  The “tail” (Figure 16), similar to the “head”, is attached to the 5mm threaded rod and 

secured by two nuts. It was designed in a way that allows the tail to be adjusted up and 

down the rod as required to keep the CoM of the spine assembly below the hip. The 

tailpiece houses the battery pack and is secured onto the rod via a cable tie. A switch 

controls the power to the Arduino and other electronic components. It can also be noted 

that the electronic ground wire has been secured to the threaded rod itself, removing the 

need for a dedicated grounding wire throughout the robot, similar to a car chassis. 

 

Figure 16: The “tail” of Pavo, housing the batteries and a power switch, both labelled 
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 Pictured in Figure 17, the three servos suspending the spine can be seen along with the 

piece that connects the two threaded rods at a 120° angle. It has been designed to allow 

the passage of wires and be 3D printable while also being suitably robust as the two 

weighted rods produce large leveraging forces on the piece. 

 

Figure 17: The middle section of Pavo with the spine joint and servos labelled 

  The implementation of the passive spring-damper can be seen in Figure 18, theoretically 

allowing the foot to flex upon contact with the ground and reducing bounce. 

 

Figure 18: The left foot assembly of Pavo with spring damper labelled 
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  Finally, the feet can be seen in Figure 19, designed to mimic the foot of a bird, it has a 

triangular footprint of 4cm by 7cm to allow Pavo to stand still without constant corrections.  

       

Figure 19: The foot of Pavo with the distances between the three contact points marked 

  A controller was also built to house the Arduino, Bluetooth module and batteries for the 

wireless control of Pavo (Figure 20, an engineering assembly drawing may be found in the 

appendix, A.9). A switch toggles power to the board and Light-emitting diodes (LEDs) 

indicate power and controller inputs. Two spools have been designed into the side of the 

controller to allow the wire of the controller to be neatly coiled when not in use. A circuit 

diagram detailing the connections within the controller can be seen in Figure 21. 

  The manufacture of Pavo involved the use of university workshops/facilities, safety 

guidelines were adhered to at all times, further elaborated on in the risk assessments found 

in the appendix (A.4). 

4cm 

7cm 
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Figure 20: The finished controller with remote 

 

 

Figure 21: A labelled circuit diagram of the electronics in the controller 
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3. Control Theory and Programming 

3.1. General Approach and Overview 

  Bipedal organisms found in nature exhibit incredibly complex and sophisticated 

behaviours with respect to governing the appendages concerned with their bipedal motion. 

They are able to take into account innumerable environmental variables and utilise them 

to best traverse their terrain in a desired direction/fashion. These systems may be referred 

to as central pattern generators (CPGs) (Ijspeert 2008).  

  The objective of the control system is then to imitate a CPG found in nature that is capable 

of accepting non-rhythmic, external data and produce an output in the form of rhythmic 

coordinated footsteps that dynamically adapt and adjust based on those external sensory 

inputs. 

  A secondary but important goal is to ensure the system (and code) is structured in a 

future-proofed manner that allows upgradability. It is for this reason that the code (available 

in the appendix, A.8) is broken down into many individual functions that interact with each 

other in a chain, each receiving data, processing/using it, and passing new data to the next 

function. This individual code structure allows further complexity/sophistication to be 

implemented in various aspects of the program without interfering with the functions of the 

rest of the code. It is however not as efficient as a more cohesive system that works in 

unison to produce the same effect faster and with fewer resources, this is further discussed 

in section 4.3.3. 

  In essence, the system designed is governed by two principal variables; modifier 

variables “xMod” and “yMod”, both ranging from -100 to 100 that motivate movement 

forwards/backwards and right/left respectively. These values are dynamically tuned to 

allow Pavo to balance and walk. 

  The system can be viewed in two parts: The first encapsulates all functions involved in 

obtaining these two variables at any one point in time, derived from the external inputs (the 

IMU data, obstacle sensing and controller input). The second involves the generation and 

execution of a cyclic gait pattern based on these variables. A high-level overview of the 

control system can be seen in Figure 22 below. 
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Figure 22: A high-level diagram illustrating the flow and functions of the control system designed 

  At over 800 lines (including comments and spaces to enhance readability), the code has 

been broken down into numbered sections for efficient navigation, it is punctuated by long 

lines of easily identifiable numbers (see code in the appendix, A.8.2). This structure also 

allows for all tuneable variables (such as gait speed and step size) to be placed at the top 

of the code to allow for quick intuitive numerical adjustments in a “control panel” like 

fashion. 

3.2. Controller Code Theory/Bluetooth Communication 

  Utilising the Bluetooth module specified in section 2.2, the modules were first configured 

and paired as a “master” (the controller) and “slave” (onboard Pavo). Once paired, the 

master circuit is able to send data wirelessly to the slave circuit.  

  As the controller only sends simple directional information, a simple numbered command 

was utilised to send data in lieu of a more traditional data packet approach. This was done 

to reduce the code required on the onboard Arduino to save memory and processing 

power. 

  When input from the “nunchuck” controller is detected, the Bluetooth module transmits a 

numerical variable containing the command and its magnitude. A table of the commands 

implemented can be seen in Table 1 below. 

Input Command 

State 

Sub-States 

(magnitude) 

Description 
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Joystick North 10 10-19 Walk forward 

Joystick East 30 30-39 Stride right 

Joystick South 50 50-59 Walk Backwards 

Joystick West 70 70-79 Stride Left 

C Button + 
Joystick Pitch 

110 110-119 Spine Pitch 

C Button + 
Joystick Roll 

120 120-129 Spine roll  

C Button + 
Joystick East 
and West 

130 130-139 Spine Look Left and right 

Table 1: A table illustrating the possible commands that are sent over Bluetooth 

  For example, if the “nunchuck” controller sensed a maximum forward input, it would send 

a command of 19 to Pavo. The first number “1” indicates a command to move forward, 

and the second number “9” indicates that it should move forward at a maximum magnitude. 

On-board, the slave module would receive the command, note that it is a number between 

10 and 19, categorise it as a “move forward” command, subtract 10 to obtain the magnitude 

of 9, and use this variable to obtain the direction modifiers (which are also based on IMU 

and obstacle sensor data), further discussed in section 3.4.7. 

  Many more command states are possible with the functionality of the “nunchuck” 

controller and a more complete table of initially planned commands can be found in the 

appendix (A.5). 

  LEDs were also utilised to provide visual feedback to the operator, with a green led 

indicating if the controller is turned on, and a multi-coloured LED turning green, red or 

orange depending on the command sent, these two LEDs can be seen in Figure 21 above. 

 

3.3. Fuzzy Logic 

  Traditional methods of bipedal robot control require high volumes of complex dynamic 

calculations that were deemed unfeasible due to the limited speed, memory, and 

processing power of the Arduino UNO utilised in Pavo. As such, a fuzzy logic-based 

approach was used to off-load the computational power required from the Arduino onto a 

computer.  

  Another reason that fuzzy logic was chosen over more traditional methods is the lack of 

position feedback and complexity of Pavo, resulting in a mathematically ill-defined system. 

Traditional methods require a complete simulation of the robot to predict its future states. 

These methods require the simulated robot to be a highly accurate approximation of its 

real-world counterpart, requiring weight, motor positions, etc. On top of that, environmental 

data is also required, such as surface incline, uneven terrain information and surface 



Ryan Khoo Yeap Hong 

34 
 

frictions. Therefore, generating a reliable and accurate model/representation of Pavo and 

its immediate environment for use in a traditional control system was deemed impractical.  

  Fuzzy logic-based systems, appropriately refined, are able to replace highly complex 

mathematical systems and has been utilised in this context to replace the balancing 

system required to prevent the bipedal robot from falling over. 

  The Fuzzy Logic Toolbox (V2.8) by MATLAB was utilised in the building of the system as 

it allows for smooth integration with the MATLAB coding environment required to produce 

a dataset that can be integrated into Arduino code, further specified in section 3.4.3. 

  The MATLAB toolbox allows both Sugeno and Mamdani style inference systems. The 

latter was chosen for its simpler, more intuitive fuzzy inference system, where human 

interpretable rules are used as opposed to Sugeno’s less readable but more 

computationally efficient weighted average system. (Kaur and Kaur 2012). 

  Based on the cart-pole problem by Douglas (2021), a fuzzy logic system mimicking the 

natural response of accelerating in the direction of a fall was utilised to implement a 

dynamic balancing system in Pavo. To do this, the IMU data, namely the angular position 

and velocity were utilised as inputs to produce a directional output. Both values are first 

mapped to an integer between -100 and 100 based on experimentally obtained expected 

maximum/minimum values. This allows the fuzzy logic inputs to be adjusted in the code, 

reducing the need to regenerate a lookup table in MATLAB for every minor iteration. This 

was also done to avoid the use of decimals that take up much more memory than whole 

numbers in the Arduino code. 

  These normalised inputs are then fuzzified into two fuzzy sets each, representing the 

degree of negative or positive angle/angular velocity as seen in Figures 23 and 24 below. 

 

Figure 23: Membership functions of crisp angle input 
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Figure 24: Membership functions of crisp angular velocity input 

  These four fuzzy variables are then processed with the following inference rules into four 

new fuzzy output variables: 

1. If (Angle is Negative) then (Speed_& Direction is Walk_Negative) 

2. If (Angle is Positive) then (Speed_&_Direction is Walk_Positive) 

3. If (Angular_Velocity is Positive) then (Speed_&_Direction is Run_Positive) 

4. If (Angular_Velocity is Negative) then (Speed_&_Direction is Run_Negative) 

  This is based on the natural reaction of walking in the direction of a fall to prevent it, with 

the speed of movement dependent on the severity of the fall. These four outputs are then 

utilised in the output membership function plot in Figure 25 and crisp numerical outputs 

obtained via the centroid method. 

 

Figure 25: Output membership function plots utilising four fuzzy output variables 

An example of this can be seen in Figure 26. 
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Figure 26: An example of the fuzzy logic system in use with normalised inputs (Angle = 5, Angular velocity = 

-24), and resulting normalised crisp output of -13.6 

  All possible input combinations were calculated and a surface plot generated, as seen in 

Figure 27 below. 

 

Figure 27: The resulting fuzzy logic surface plot with crisp outputs on the vertical Z-axis and crisp inputs of 

angle and angular velocity on the X and Y-axis 

3.4. Code Details 

3.4.1. Ultrasonic Sensor Implementation 

  The HC-SR04 ultrasonic sensor measures distance by producing an ultrasonic chirp and 

measuring the time taken for that chirp to be reflected. It calculates this via equation 1 

(accounting for the distance travelled there and back by multiplying by 0.5): 

 Distance (m) = Duration (s) * 340(m/s) * 0.5                                                         Eq. (1) 

  This was implemented without utilising a delay function that would interfere with the rest 

of the code. A method utilising the “micros()” function was used to accomplish this and can 

be seen in the code found in the appendix (A.8.2). 
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  This distance check is executed once every footstep cycle to reduce the computational 

load required, this still amounts to multiple measurements a second which is adequate for 

the prevention of collisions with objects. 

3.4.2. IMU Implementation 

  The IMU was utilised to obtain the angular position and angular velocity of Pavo’s hip 

(where the IMU is embedded). The IMU provides raw data in the form of acceleration from 

the accelerometer and angular velocity from its gyroscope. Both were combined to 

produce the best possible approximation of its angular position. 

  The accelerometer was first utilised to obtain the pitch and roll of the robot utilising 

equations 2 and 3 below, calculating the resultant vector angle relative to gravity, 

converting it into degrees and correcting an experimentally obtained error value: 

𝑋𝐴𝑛𝑔𝑙𝑒 = (𝑎𝑡𝑎𝑛 (
𝑌

√𝑋2
) + 𝑍2) ×

180

𝜋
+ 𝑒𝑟𝑟𝑜𝑟                                                                             Eq. (2) 

𝑌𝐴𝑛𝑔𝑙𝑒 = (𝑎𝑡𝑎𝑛 (
−𝑋

√𝑌2
) + 𝑍2) ×

180

𝜋
+ 𝑒𝑟𝑟𝑜𝑟                                                                              Eq. (3) 

  The Gyro angular velocities are then manually integrated with equation 4 below to obtain 

an alternative set of pitch and roll values. 

𝑁𝑒𝑤 𝐺𝑦𝑟𝑜 𝑎𝑛𝑔𝑙𝑒 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐺𝑦𝑟𝑜 𝑎𝑛𝑔𝑙𝑒 + 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗

𝑇𝑖𝑚𝑒 𝑠𝑖𝑛𝑐𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑔𝑦𝑟𝑜 𝑎𝑛𝑔𝑙𝑒            Eq. (4) 

  These two sets of angles derived from accelerometer data and gyro data were then 

combined to obtain the best approximation of the angular positioning of Pavo. 

    The angular velocity about the X and Y-axis is also utilised by the fuzzy logic system. 

They are provided by the gyros with no extra calculations necessary.  

   

3.4.3. Fuzzy Logic Implementation 

  The pre-calculated fuzzy logic data of Figure 27 above is integrated into the Arduino code 

by translating the surface into a 2-dimensional look-up table, similar to the work of Sobhan 

et al. (2009), where inputs of angle and angular velocity as row and column indexes return 

an appropriate directional output. This was accomplished with MATLAB code (see 

appendix A.6). The surface was discretised into a 51 by 51 matrix array, allowing the 

Arduino to store the table in its flash memory. The MATLAB code written allows for 

adjusting the size of the matrix, with larger tables providing better accuracy from smaller 

increments, allowing for future improvements should a processor with more memory be 

utilised. 
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  The raw IMU data was smoothed with an exponential filter to reduce the noise from the 

vibrations of the physical robot. This was employed utilising equation 5: 

𝑥𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑊 × 𝑥𝑁𝑒𝑤 + (1 − 𝑊) × 𝑥𝑂𝑙𝑑                     Eq. (5) 

  With 𝑊 being a tuneable weight factor to modify the nature of the filter, 𝑥𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 being the 

filtered value, 𝑥𝑁𝑒𝑤 being the new input value and 𝑥𝑂𝑙𝑑 being the previous filtered value. 

The results of the filter can be seen in Figures 28 and 29.  

 

 

Figure 28: The raw roll value (blue) and the filtered, smoothed roll value (red) 

 

 

Figure 29: The raw Y-axis gyro value (blue) and the filtered value (red), with the filter effectively extracting a 

steady rhythm out of a noisy input resulting from the gait cycle of Pavo 

3.4.4. Servo Set Structure 

  Data for any given position is stored in an array of ten variables, with the first nine values 

corresponding to each of the nine servos on board, and the tenth value utilised by the 

“executePosition()” function to determine the number of transitionary states to generate 
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between the old and new position (detailed in section 3.4.8), an example of this structure 

can be seen in Figure 30 below.  

 

Figure 30: The structure of a position set utilised in the code, with nine servo values and a tenth “divisions” 

value that determines the number of transitionary values to be generated 

  These values correspond to the positioning of each servo and have been normalised to 

a value between -100 and 100, representing a servo’s minimum and maximum values 

respectively. This allows for a custom range of movement to be set for each servo to 

prevent them from moving to positions beyond their range, damaging components and to 

remove the need to recall the specific ranges and values of each servo. 

  This system also utilises a pre-set neutral position value, corresponding to the normalised 

“0” value. This allows Pavo to intuitively come to a neutral standing position when a set of 

only zeros are written to the servos, it also allows a convenient way of adjusting the neutral 

position of the servos with a single variable change. An example of this system is illustrated 

in Figure 31 below. 

 

Figure 31: Parallel number lines illustrating the mapping of true servo angles to their normalised values 

utilised in the position sets with an example of a set value of 20 resulting in a servo angle of 139° 

3.4.5. Cycle Stages 

    From the quail walk cycle (Figure 6, section 1.1), a gait pattern was generated by 

sectioning the gait cycle into eight distinct positions. With regards to a single leg, six 

positions correspond to ground contact, and two represent the leg while airborne and in 

the swing phase. Dividing a cycle into eight allows for the two legs to work in tandem (with 

an offset of four stages) to reproduce the walking cycle of a quail, with both legs in contact 
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with the ground (double support) for a total of 25% of each cycle, a good approximation of 

the experimentally obtained 26% by Abourachid et al. (2011). This is illustrated in table 2 

below. 

Table 2: A table showing the contact of each foot with the ground during the transitions between the eight 

states, and the resulting single support (SS) or double support (DS) state of a stage, with ground contact 

states indicated in grey 

  These eight sets were then each broken into three different aspects, one “empty” set, 

that represents a “running on the spot” movement, a “front/back” set, and a “left/right” set 

that when combined with an empty set would produce footsteps enabling front/back and 

left/right movement respectively. 

  These sets are detailed in table 3, and the resulting cycle of all eight “empty” and 

“front/back” sets can be seen in Figure 32. 

Table 3: A table describing the three aspects of each of the eight stages, with “L” denoting the left leg and 

“R” denoting the right leg, C1 represents the first contact of the foot with the ground, C2, the second, and so 

on, until the leg is lifted during the swing phase, indicated by “air” 

 Stage 

1-2 

Stage 

2-3 

Stage 

3-4 

Stage 

4-5 

Stage 

5-6 

Stage 

6-7 

Stage 

7-8 

Stage 

8-1 

Left Leg Grounded Grounded Grounded Air Air Air Grounded Grounded 

Right Leg Air Air Grounded Grounded Grounded Grounded Grounded Air 

Resulting 
Support 

SS SS DS SS SS SS DS SS 

Footstep stage: % of cycle Empty set Front/back set  Left/right set 

1 12.5% Right leg up  L C3, R air L C3, R air 

2 12.5% Right leg up L C4, R air L C4, R air 

3 12.5% Neutral L C5, R C1 L C5, R C1 

4 12.5% Neutral L C6, R C2 L C6, R C2 

5 12.5% Left leg up L air, R C3 L air, R C3 

6 12.5% Left leg up L air, R C4 L air, R C4 

7 12.5% Neutral L C1, R C5 L C1, R C5 

8 12.5% Neutral L C2, R C6 L C2, R C6 
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Figure 32: The resulting step pattern of eight “empty” sets combined with their eight corresponding 

“front/back” sets, with the ground contacts indicated by a red “X” 

  These three sets can be combined with different weights to produce footsteps in any 

front/back and left/right direction, determined by the “xMod” and “yMod”, detailed in section 

3.4.7 below. 

3.4.6. Cycle Stage Control 

  An independent system is required to coordinate these stages and to ensure the correct 

sequence of movements is executed. This is done by a cyclic global variable that denotes 

the current stage of the gait pattern (1 to 8). Upon completion of a stage, this “cycle stage” 

variable is incremented to the next, cycling through the stages. The code utilises this 

variable to call upon the appropriate stored movement sets to produce the next movement 

in the gait cycle. 

  A 9th stage was also created to represent “at rest”. This is to allow Pavo to come to a 

complete stop when the system is in balance. On start-up, Pavo remains in stage 9, and 

will only break into the cyclic stages 1 to 8 if the “xMod” or “yMod” surpasses a certain pre-

set threshold, indicating a desire to begin movement. It is then possible for the system to 

break out of the cyclic gait back to the “resting” stage if both direction modifiers fall below 
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the threshold at any time during the cycle (indicating a balanced state), preventing 

unnecessary power consumption and component wear from “running on the spot”. This 

cycle is illustrated in Figure 33. 

 

Figure 33: A diagrammatic representation of the cyclic stage variable system 

 

3.4.7. Direction Defining and New Position Generation 

  To obtain the X-axis direction modifier “xMod”, the code first utilises the filtered angle and 

angular velocity about the Y-axis to extract an appropriate direction value from the fuzzy 

logic lookup table, it then takes into account the current command state from the controller 

(if any) and adds that value to the modifier, finally, it checks if the ultrasonic sensor detects 

an object closer than a predefined amount, and if it does, adds an appropriate negative 

value to the modifier to encourage deceleration or acceleration backwards. This system 

enables Pavo to avoid collisions without overwriting the fuzzy logic variables or operator 

inputs, allowing all three to operate together. 

  The Y-axis modifier “yMod” is similarly obtained by utilising the angular position and 

velocity about the X-axis to obtain a fuzzy logic output from the same lookup table and is 

modified based on input from the controller. 

  These two values (both between -100 and 100), along with the current cycle stage 

variable are used to extract the three appropriate sets for the current cycle stage and are 

combined with weights based on the modifiers to generate the next position set in the 

direction required. A graph illustrating examples of resulting directions and magnitudes 

can be seen in Figure 34. 
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Figure 34: A graph illustrating various directions and magnitudes of movement derived from the X and Y 

modifiers, with the vertical X-axis representing walking forward/back relative to Pavo (pictured from above) 

3.4.8. Eased Position Transitions 

  Once a new target position has been generated, Pavo’s components must move to the 

new position in small increments to allow for speed control of the servos. This is done by 

noting the new and current position of a servo and populating the space between them 

with a number of transitionary positions based on the number of divisions required by the 

new set (as in Figure 30).  

  These transitionary states may be generated in three different styles as seen below in 

Figure 35; One linear transition for normal operation, and two sinusoidal transitions, one 

for beginning a movement from rest and the other slowing down the robot to a rest state. 

X 

Y 

xMod = 100 

yMod = 100 

xMod = -100 

yMod = 50 

xMod = 20 

yMod = -50 

xMod = -80 

yMod = -70 

xMod = -30 

yMod = 60 
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Figure 35: The three possible transitionary trends, a) Linear, b) Speeding up, c) Slowing down, with an x-axis 

of time and y-axis of servo position, 0 representing the old state and 100 the new target state 

  This is done by first producing an array of variables (on a scale of 0% to 100% as in 

Figure 35) with the appropriate transition style and length (length determined by the tenth 

“divisions” variable), then multiplying each element by the difference between the old and 

new value of each servo.  

  This multiplier array is produced in a “for loop” that loops according to the divisions 

required and generates the values one at a time until the full array has been populated, 

the equations 6 to 8 are utilised for each trend pattern. 

Linear: 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 =
1

𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠
× 𝑖                             Eq. (6) 

Slow down to rest: 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 𝑠𝑖𝑛 (
𝜋/2

𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠
× 𝑖)                                     Eq. (7) 

Speed up from rest: 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 𝑐𝑜𝑠 ((
𝜋/2

𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠
× 𝑖) + 𝜋)                          Eq. (8) 

  With 𝑖 being the cumulative times the loop has run. 

  This transitionary array of servo positions is then placed into a “pending set container” 

(described below in section 3.4.9), and the process repeated for all remaining servos. 

 

a) b) c) 
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3.4.9. Pending Set Container and Periodic Position Execution 

  As each of the servo transitionary arrays is calculated, they are placed in a 2-dimensional 

array with ten columns to store the ten variables of a position set (see Figure 30), the 

number of rows is based on a pre-set variable indicating the maximum transition states 

allowed which may be increased with larger SRAMs (static random-access memory). This 

“container” stores the queued position sets that need to be written to the servos and is 

structured as in Figure 36 below. 

 

Figure 36: Format of “pending sets” container array, with “x” denoting a servo position value 

  Upon calculating a new transitionary array, the pending set is populated from the top 

down (with reference to Figure 36) and “N” updated with the number of rows added, this 

is the number of sets queued and available for execution. 

  The code periodically checks the pending set container (determined by a pre-set time-

variable) for available sets to execute. If “N” is not 0, it will take the position set on the Nth 

row and execute those positions. It will then reduce N by one to allow for the next set to 

be executed on the next check. This repeats until N is 0 and Pavo has assumed the new 

target position on the first row of the container. The container is then open to be overwritten 

with the next set of transitionary position sets derived from a new target position and N 

reset accordingly. 

  All these systems work in unison to produce an upgradeable dynamic system that 

receives non-rhythmic external data and produces an adaptive rhythmic gait cycle; 

mimicking the central pattern generators found in nature. A more comprehensive version 

of figure 22 illustrating how the above functions are linked and function together can be 

seen in figure 37 below. 
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Figure 37 A control diagram detailing how all the individual functions detailed above in section 3 work 

together to imitate a CPG 

 

 

 

 

 

 

“empty” set 

“left/right” set 

“front/back” set xMod 

yMod 

New target position 
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4. Results and Discussion  

4.1. Post-Assembly Adjustments 

4.1.1. SRAM Limitations 

  Upon the initial implementation of the code above, it was found that the SRAM of the 

Arduino, where it stores variables, was overloaded. This resulted in the Arduino glitching 

and failing to run the code. It was concluded that the large arrays, namely the 51 by 51 

fuzzy logic lookup table, pending set container, and the eight cycle stage positions, each 

broken into three sets ten variables long, were overutilizing the SRAM.  

  An Arduino library was utilised to store these large amounts of data in the much larger 

flash memory of the Arduino instead (via the PROGMEM function). This allows the SRAM 

to only store the data that is immediately required by extracting the data from flash memory 

into a buffer that can be overwritten once the data has been utilised (Andrews 2015). 

  Prior to this fix, the flash memory was only at 56% of its maximum capacity and SRAM 

was at its limit (72% of its maximum capacity to global variables, and the rest to local 

variables), crashing the program. Once implemented, the flash memory usage increased 

by only 6%, while the SRAM usage decreased by 29%, allowing the code to function as 

originally intended. 

 

4.1.2. Servo Torque Limitations 

  Upon initial testing, it was found that the servos were vastly underpowered for the 

intended movements, with the servos unable to perform large movements without skipping 

steps and eventually failing due to the inherent moment applied to the knee motor due to 

the configuration of the leg. 

  A modification inspired by Badri-Spröwitz et al. (2022) was implemented to aid the knee 

servos in carrying their loads. The “Birdbot” developed by Badri-Spröwitz et al. utilises an 

avian-inspired leg clutching mechanism to achieve an energy-efficient gait, an important 

aspect of this are springs and pulleys in the leg that accept and store energy upon contact 

with the ground and re-release it when kicking off, imitating the ligaments and tendons 

found in nature as mentioned in section 1.1 (Badri-Spröwitz et al. 2022). 

  An analogous system was implemented by attaching a rubber band to the knee joints as 

seen in Figure 37 below. 
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Figure 38: Two views of the added rubber bands (blue) attached to the knee to aid the servos, indicated by 

red arrows 

  A second rubber band was applied to the opposite side of the leg to counteract the flexing 

of the acrylic thigh piece due to the initial rubber band. 

  A diagram of the modification can be seen in Figure 38, where the tensioned band applies 

a force “A” on the knee joint, resulting in moment “B” about the pivot point, counteracting 

the inherent moment “C” resulting from its weight, reducing the resultant torque 

requirement on the knee servo joints. 

 

Figure 39: A force/moment diagram illustrating the rubber band modification (blue) counteracting weight 

induced moments 

A 

B 

C 
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  This modification decreased the torque requirements of the knee servos, enabling Pavo 

to stand without issues and begin performing the movements detailed in section 4.2 below. 

 

4.2. Results 

  With Pavo successfully built and control theory coded and implemented, Pavo’s ability to 

combine the appropriate sets and execute a gait cycle was tested, this can be seen in 

video Figure 39 for walking forward (xMod = 100, yMod =0) and stepping right (xMod = 0, 

yMod = 100). 

 

Figure 40: [VIDEO] A demonstration of the cyclic footstep functionality with slowed down and exaggerated 

movements for a) walking front and b) stepping right (full links can be found in the appendix (A.1) if 

embedded links are not functioning) 

  Pavo’s ability to respond to all three external stimuli was also tested successfully, with 

video Figure 40 demonstrating Pavo’s ability to move in the direction of fall by utilising 

the onboard fuzzy logic lookup table, video Figure 41 demonstrating its ability to sense 

an obstacle and move backwards, and video Figure 42 demonstrating a successful 

response to wireless external input from the controller. In all the aforementioned Figures, 

the speed of the cycle has been reduced and movements exaggerated to allow the 

observation of the distinct cycle stages. 

a) b) 

https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22
https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22
https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22
https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22
https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22
https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22
https://www.youtube.com/embed/ajH8I8Yix_Y?start=16&end=22
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Figure 41: [VIDEO] A demonstration of Pavo’s ability to respond accordingly to angular position and come to 

rest when rebalanced a) Tilting forwards and walking forward, b) Tilting backwards and walking backwards, 

c) Tilting right and walking right, d) Tilting left and walking left 

 

 Figure 42: [VIDEO] A demonstration of Pavo’s ability to respond to a sensed obstacle and begin a 

backwards movement and stop when at a safe distance 

a) b) 

c) d) 

<20cm 

https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=61&end=84
https://www.youtube.com/embed/ajH8I8Yix_Y?start=61&end=84
https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=61&end=84
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Figure 43: [VIDEO] A demonstration of Pavo’s ability to respond to controller input appropriately  

  As mentioned above, the servos were unable to provide the adequate torque required to 

mimic the walking of a quail as seen in Figure 6. As such, the angular ranges of movement 

were tuned down to a point where the servos were able to execute the positions written to 

them without skipping/failing.  

  These smaller steps allowed Pavo to walk in a “shuffle”, moving across a surface in a 

constantly stable way, maintaining double support throughout the majority of the gait cycle 

instead of the planned 25%. This, unfortunately, prevented the fuzzy logic system from 

seeing meaningful implementation in balancing Pavo and preventing falls, further 

discussed in section 4.3.5. 

  The average speed was then obtained by measuring the time taken for Pavo to traverse 

a distance of 70cm, this can be seen in video Figure 43. 

 

Figure 44: [VIDEO] A demonstration of Pavo walking 70cm 

https://www.youtube.com/embed/ajH8I8Yix_Y?start=86&end=124
https://www.youtube.com/embed/ajH8I8Yix_Y?start=216&end=255
https://www.youtube.com/embed/ajH8I8Yix_Y?start=86&end=124
https://www.youtube.com/embed/ajH8I8Yix_Y?start=216&end=255
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  This timed test was repeated a total of six times and durations averaged. The average 

speed obtained was 29.371mm/s (individual test results can be found in the appendix, 

A.7). 

  The consistency of the gait cycle and its speed were also tested by overlaying the six 

tests to observe the variations between them. This can be seen in video Figure 44. 

 

Figure 45: [VIDEO] Six speed tests overlayed 

  It can be seen that Pavo is fairly consistent in maintaining its speed, and saw a maximum 

variance of 28.6% between its shortest and longest run. This test was repeated from a top-

down view to assess Pavo’s ability to maintain a straight course, as seen in video Figure 

45. 

 

Figure 46: [VIDEO] Five directional tests overlayed  

https://www.youtube.com/embed/ajH8I8Yix_Y?start=126&end=159
https://www.youtube.com/embed/ajH8I8Yix_Y?start=161&end=210
https://www.youtube.com/embed/ajH8I8Yix_Y?start=126&end=159
https://www.youtube.com/embed/ajH8I8Yix_Y?start=161&end=210
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  From Figure 45, It can be seen that Pavo is also fairly consistent in its direction, not 

veering off by more than a few degrees over the course of the test, however, a tendency 

to turn left was observed, this may be a result of an underpowered servo or a slight incline 

of the surface. Directional consistency may be improved with the implementation of a 

turning function and usage of data from the currently unutilised onboard magnetometer, 

further discussed in section 4.3.6. 

 

4.3. Issues, Improvements and Future Work  

  Throughout the development and testing of the robot, many issues were identified. These 

issues and their possible solutions/suggestions for future work are as follows. 

4.3.1. Servo Torques and Power 

  In its current state, one of the main imitations of Pavo is its servos. They are unable to 

provide the torques required to enable the full implementation and exploration of the 

control systems developed. 

  A simple way to reduce the torques required is to reduce the size of the robot, reducing 

moments of inertia and weight simultaneously. However, this reduces its effectiveness at 

emulating a real-world implementation of the robot which would likely be larger instead of 

smaller and does not address the issue directly. 

  Utilising better actuators such as those used in the robots mentioned in section 1.1 would 

improve Pavo’s ability to perform larger movements. This may, however, increase the cost 

of the robot, this cost can be alleviated by only upgrading certain servos that require the 

most torque/are currently the most likely to be overloaded (i.e., the knee and hip joints). 

  Further research and implementation of compliance-based mechanisms to store energy 

during the walking gait such as in section 4.1.2 and in work done by Badri-Spröwitz et al. 

(2022) would further reduce actuator loads, it may also attenuate undesirable oscillations 

and even decrease power draw. 

  Finally, reducing the weights of various parts of the robot with better design would also 

reduce the torques required to actuate components, methods of reducing weight are 

elaborated on in section 4.3.2 below. 

 

4.3.2. Improved Construction of the Robot 

  The inability to actuate larger movements, resulting in the shuffling motion of Pavo may 

also be attributed to the compliance/deformations while walking due to its construction, 
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with the entire construction bending to accommodate a new position with both legs still on 

the ground instead of swinging one forward as intended. 

  This may be improved by utilising more rigid materials and improving the design. Different 

manufacturing methods such as metal CNC machining and direct metal laser sintering 

(DMLS) may be utilised to realise this. Design methods such as generative design (GD) 

or topology optimisation may also be utilised to reduce weight and increase rigidity such 

as in Junk et al. (2018) or Rajput et al. (2021), where GD was utilised to redesign a 

prosthetic leg as seen in Figure 46. 

 

Figure 47: A generatively designed calf prosthetic, reducing material cost and weight while maintaining 

required strength (Rajput et al. 2021) 

  The joints connecting components may also be improved to reduce this unintentional 

flexibility, for example, by replacing the current joints with better, more rigid ball bearing-

based joints.  

  Power solutions such as lithium-ion batteries with better power-to-weight ratios may also 

prove to be effective methods of decreasing overall weight. 

  The spring damper integrated into Pavo’s legs could also be tuned to better attenuate 

oscillations that interfere with IMU data. As it stands, the spring dampers are too stiff and 

may be considered fully rigid, providing negligible damping effects. 

   

4.3.3. Computing Power 

  A limitation encountered throughout the development of Pavo was the limited 

computational capacity of the Arduino UNO, with its computing speed, flash memory 

capacity and static random-access memory (SRAM) capacity all bottlenecking the 

implementation of the control system developed. 
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  One way of circumventing this issue is to improve/optimise the code to make it run more 

efficiently and to utilise less memory and SRAM. With code of this complexity, there are 

likely many avenues to explore to accomplish this such as reusing arrays and utilising 

more efficient algorithms to calculate/generate data. As mentioned in section 3.1, the code 

is currently structured in a compartmentalised fashion, with functions working 

independently to use, process and execute data received from separate functions higher 

in the chain. This is to facilitate the ease of improving and updating the code, however, 

once developed to a satisfactory degree, the code may be rewritten to utilise the data in a 

much more efficient and cohesive manner, removing the need for the “chain” of functions 

that may slow the program down and limit the robots ability to function. 

  This does not however remove the hard limitations such as the Arduino’s 32 Kilobyte 

flash memory that limits the size (and therefore accuracy) of the fuzzy logic look-up table 

and the 2 Kilobytes of SRAM that limit the number of transitionary sets that can be stored 

(reducing movement smoothness). New hardware must be considered for this, boards 

such as the more powerful Arduino DUE, with 512 Kilobyte flash memory and 96 Kilobyte 

SRAM, or a Raspberry Pi as considered in section 2.2 could improve computing power 

without sacrificing size, a size comparison of these solutions can be seen in Figure 47. 

 

Figure 48: A size comparison of: a) Arduino DUE, b) The currently implemented Arduino UNO, c) Raspberry 

Pi (Senese 2012) 

  The computational capacity may also be improved by further offloading calculations to an 

external board/computer, and sending/receiving the data wirelessly, further discussed in 

section 4.3.4 below. 

a) b) c) 



Ryan Khoo Yeap Hong 

56 
 

4.3.4. Bluetooth Communication 

  The current implementation of one-way Bluetooth communication stands to be greatly 

improved. A proper Bluetooth data packet strategy may be implemented to facilitate bi-

directional data transfer at much higher speeds and volumes. 

  This allows the sharing of processing power between the two Arduinos as opposed to the 

current configuration where all calculations are performed on the onboard Arduino alone. 

This may effectively double the memory and SRAM available if implemented properly, 

without needing to upgrade hardware. For example, the robot could send obstacle data 

and raw IMU data to the controller-side Arduino, and have it use that data to calculate the 

next movement set required before sending that back to the robot to execute. 

  This concept may be explored further by offloading computation onto more powerful 

systems such as personal computers that do not have to be carried or powered by the 

robot. 

4.3.5. Fuzzy Logic 

  As mentioned above, due to the limitations of the actuators utilised, the fuzzy logic system 

planned could not be fully realised. While it has been successfully implemented and shown 

to respond appropriately to external data, the reduced footstep ranges did not allow Pavo 

to truly mimic the cyclic “falling and catching” of a natural quail gait cycle. 

  Even with adequate servos, it is still expected that more testing and refining of the fuzzy 

logic system is required before the robot is truly able to reliably mimic the gait cycle of a 

quail. With weights and membership functions needing to be adjusted and different 

approaches possibly explored, such as the fuzzy logic returning a directional acceleration 

instead of a directional speed. 

  Simulations of simplified models of the robot may also be performed to provide a better 

starting point that may then be further refined in the physical model. 

  The implemented fuzzy logic currently accepts two inputs and produces one output, 

resulting in a 2-dimensional array look-up table, more inputs and outputs could also be 

explored with improved hardware allowing the storing of larger, higher-dimensional arrays, 

one example of an extra fuzzy logic input is described in section 4.3.6. 

 

4.3.6. Environmental Data/Feedback 

  For a robot to traverse an environment effectively, comprehensive environmental data is 

needed, a logical improvement would therefore be increasing/improving the data that the 

robot can gather from its environment, and how it reacts to it. 
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  Firstly, obstacles are currently avoided by simply adding a bias to move backwards upon 

detection of an object, this may be improved by programming a system to allow the robot 

to actively change its trajectory to avoid the object, it may also be possible to have the 

robot stop and survey its surroundings before choosing the best path forward to avoid the 

obstacle. 

  Sensory components could also be added/upgraded, such as additional ultrasonic 

sensors, camera systems, servo position/torque feedback, or extra IMUs, as described in 

section 1.1 above. Location/heading data such as from the currently unused 

magnetometer or a GPS may also improve directional consistency and allow the robot to 

navigate to set locations/in set directions. 

  This environmental data may then be utilised as additional inputs for the fuzzy logic 

system and produce an improved directional output, such as in the work by Mishra et al. 

(2022), where ultrasonic sensor data was utilised as fuzzy logic inputs for a robot to avoid 

obstacles. 

 

4.3.7. Gait/Walking Cycle 

  Pavo is currently susceptible to inclined surfaces and requires a surface with an 

appropriate friction to walk. These issues may be alleviated by improving aspects of the 

gait cycles, along with the use of improved environmental data as described above. 

  Firstly, more work could be done in programming the walk cycles based on the gait of the 

quail, with a more faithful representation of its movements achievable. Conversely, as 

Pavo is not an exact replica of a quail, work may also be done to optimise the cycle for the 

built configuration instead, with improvements such as rhythmic rolling of the body to 

counteract the sideways tilts caused by the leg swings.  

  The movements are currently broken down into three sets (“empty”, “front/back” and 

“left/right”) that are combined with different weights to produce a footstep, future work may 

use this easily expandable framework to break down complex movements into further sub-

categories to further refine and improve the control of the CPG. For example, breaking 

down the “empty” set into separate footstep and counterbalance movements, and having 

the counterbalance movements be informed by IMU data to counteract more dynamic, 

unexpected perturbances. Another example could be a new sub-set concerning rhythmic 

asymmetrical body yaw, this may be adjusted to allow the robot to veer in a desired 

direction while walking forwards or backwards.  
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5. Conclusion 

  A literature review of bipedal robots was conducted, concluding that bird-based bipedal 

robots present a promising new approach to the bipedal problem, resulting in lower CoMs 

and better stability. It was also found that many control theories utilised in the control of 

current bipedal robots are based upon oftentimes unrealistic simplifications/assumptions 

and are computationally expensive. 

  Consequently, a low-cost bipedal robot based on a quail was designed and built utilising 

the minimum DoFs needed for bipedal movement and balance. A novel control theory 

utilising fuzzy logic and based upon an experimentally obtained quail gait cycle was 

developed, coded and implemented, with emphasis placed on upgradability to facilitate 

future work. 

  Issues throughout its development were identified and remedied where possible, chief 

among these include: 

• The servos being underpowered for the movements initially planned, 

demonstrating the importance of compliant ligament-like components in bipeds. 

This resulted in Pavo only being capable of taking small steps, preventing the fine-

tuning of the fuzzy logic system to operate as intended. 

• The overly-compliant construction of Pavo preventing positions from being enacted 

as initially planned. 

• The Arduino UNO’s speed, SRAM and memory limitations reducing the speed and 

smoothness of the footstep cycles, and also limiting the accuracy of the fuzzy logic 

implementation. 

  In conclusion, Pavo was able to walk without falling in a “shuffling” fashion at an average 

speed of 29.371mm/s. Pavo was shown to successfully utilise non-rhythmic external data 

to produce adaptive cyclic footstep patterns, autonomously responding to IMU data, 

obstacle sensing, and operator inputs, indicative of a successful implementation of the 

control theory developed. 
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Appendix 
 

A.1 Video Figure Links 
Figure 39: https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22  

Figure 40: https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59  

Figure 41: https://www.youtube.com/embed/ajH8I8Yix_Y?start=61&end=84  

Figure 42: https://www.youtube.com/embed/ajH8I8Yix_Y?start=86&end=124  

Figure 43: https://www.youtube.com/embed/ajH8I8Yix_Y?start=216&end=255  

Figure 44: https://www.youtube.com/embed/ajH8I8Yix_Y?start=126&end=159  

Figure 45: https://www.youtube.com/embed/ajH8I8Yix_Y?start=161&end=210  

 

A.2 Parts list and Costing 

Item Description/Specifications 
Links Amo

unt  Price  

Arduino 
Uno 
equivalent 
(Elegoo 
Branded) 

32Kb of flash memory, 2Kb of 
SRAM, a clock speed of 16MHz, 14 
digital IO pins, 6 analogue IO pins, 
5V operation.  2 

£           
16.64 

Adafruit 16-
Channel 12-
bit PWM 
Servo Driver 

Utilises I2C communication, taking 
up only two pins on the Arduino, 
drives and powers up to 16 servos 
simultaneously.  1 

£           
13.00 

ICM-20948 
9-DoF 
Inertial 
measureme
nt unit 

3 axes of accelerometer data, 
gyroscopic data, and 
magnetometer data. The IMU is 
accurate to ±250 degrees per 
second for the gyroscope, ±2g for 
the accelerometer and ±4900μT for 
the magnetometer. 

 
1 

£           
13.00 

HC-05 
Bluetooth 
module 

Configured with one master and 
one slave.  2 

£             
8.00 

HC-SR04 
Ultrasonic 
Rangefinder 

Capable of sensing objects within a 
range of 2cm to 400cm, at an 
accuracy of approximately 3mm.  1 

£             
2.00 

Nintendo 
“Nunchuck” 

Capable of generating gyroscopic 
pitch and roll outputs and outputs 
from its 2-axis joystick and two 
buttons, Interfaces via I2C  1 

£             
6.99 

https://www.amazon.co.uk/gp/pro

duct/B01EWOE0UU/ref=ppx_yo_

dt_b_asin_title_o06_s00?ie=UTF

8&psc=1  

https://thepihut.com/products/adaf

ruit-16-channel-12-bit-pwm-servo-

driver-i2c-interface-

pca9685?variant=27740507729&

currency=GBP&utm_medium=pro

duct_sync&utm_source=google&

utm_content=sag_organic&utm_c

ampaign=sag_organic  

https://thepihut.com/products/adaf

ruit-tdk-invensense-icm-20948-9-

dof-imu-mpu-9250-

upgrade?ref=isp_rel_prd&isp_ref_

pos=3  

https://thepihut.com/products/hc-

05-bluetooth-module  

https://thepihut.com/products/ultra

sonic-distance-sensor-hcsr04  

https://www.amazon.co.uk/gp/pro

duct/B01CJ9J7T4/ref=ppx_yo_dt_

b_asin_title_o04_s00?ie=UTF8&t

h=1  

https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22
https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=61&end=84
https://www.youtube.com/embed/ajH8I8Yix_Y?start=86&end=124
https://www.youtube.com/embed/ajH8I8Yix_Y?start=216&end=255
https://www.youtube.com/embed/ajH8I8Yix_Y?start=126&end=159
https://www.youtube.com/embed/ajH8I8Yix_Y?start=161&end=210
https://www.amazon.co.uk/gp/product/B01EWOE0UU/ref=ppx_yo_dt_b_asin_title_o06_s00?ie=UTF8&psc=1
https://www.amazon.co.uk/gp/product/B01EWOE0UU/ref=ppx_yo_dt_b_asin_title_o06_s00?ie=UTF8&psc=1
https://www.amazon.co.uk/gp/product/B01EWOE0UU/ref=ppx_yo_dt_b_asin_title_o06_s00?ie=UTF8&psc=1
https://www.amazon.co.uk/gp/product/B01EWOE0UU/ref=ppx_yo_dt_b_asin_title_o06_s00?ie=UTF8&psc=1
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729&currency=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729&currency=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729&currency=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729&currency=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729&currency=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729&currency=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729&currency=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729&currency=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-tdk-invensense-icm-20948-9-dof-imu-mpu-9250-upgrade?ref=isp_rel_prd&isp_ref_pos=3
https://thepihut.com/products/adafruit-tdk-invensense-icm-20948-9-dof-imu-mpu-9250-upgrade?ref=isp_rel_prd&isp_ref_pos=3
https://thepihut.com/products/adafruit-tdk-invensense-icm-20948-9-dof-imu-mpu-9250-upgrade?ref=isp_rel_prd&isp_ref_pos=3
https://thepihut.com/products/adafruit-tdk-invensense-icm-20948-9-dof-imu-mpu-9250-upgrade?ref=isp_rel_prd&isp_ref_pos=3
https://thepihut.com/products/adafruit-tdk-invensense-icm-20948-9-dof-imu-mpu-9250-upgrade?ref=isp_rel_prd&isp_ref_pos=3
https://thepihut.com/products/hc-05-bluetooth-module
https://thepihut.com/products/hc-05-bluetooth-module
https://thepihut.com/products/ultrasonic-distance-sensor-hcsr04
https://thepihut.com/products/ultrasonic-distance-sensor-hcsr04
https://www.amazon.co.uk/gp/product/B01CJ9J7T4/ref=ppx_yo_dt_b_asin_title_o04_s00?ie=UTF8&th=1
https://www.amazon.co.uk/gp/product/B01CJ9J7T4/ref=ppx_yo_dt_b_asin_title_o04_s00?ie=UTF8&th=1
https://www.amazon.co.uk/gp/product/B01CJ9J7T4/ref=ppx_yo_dt_b_asin_title_o04_s00?ie=UTF8&th=1
https://www.amazon.co.uk/gp/product/B01CJ9J7T4/ref=ppx_yo_dt_b_asin_title_o04_s00?ie=UTF8&th=1
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Servos 
SER0056 

Capable of producing a maximum 
continuous torque of 0.55 kgf·cm, 
up to 300° of motion  9 

£           
41.49 

AA Battery 

Pack of 12, 1.5V, 3Ah Capacity, 
with four batteries, supplies 6 volts 
to the electronics  12 

£             
7.86 

AA Battery 
Holders Holds four AA Batteries  2 

£             
1.40 

RC Damper 
Suspension 

Hobby radio-controlled car 
suspension system.  1 

£           
10.01 

STEMMA 
QT 
Proprietary 
cable 

To allow stronger, neater 
connections to the IMU  1 

£             
0.80 

Assorted 
wires, 
resistors, 
etc. Provided by Electronics workshop 

N/A 

N/A N/A 

3D 
printed/lase
r cut parts Provided by Design Workshop 

N/A 

N/A N/A 

  

 
Total 

£        
121.19 

 

 

 

A.3 Software Utilised 
 

Software: Utilised for: 

Fusion 360 Design of Pavo 
Solidworks Engineering drawings of Pavo 

MATLAB Coding of fuzzy logic and code to generate Arduino compatible lookup table 
Arduino IDE Code editor and compiler for Arduino UNO 

Lightworks Video editor utilised for video Figures 
Draw.io To produce diagrams/charts 
Fritzing To produce circuit diagrams 

Cura To slice 3D files for 3D printing 
PrusaSlicer To analyse and verify parts before sending to 3D print 

 

  

https://www.mouser.co.uk/Product

Detail/DFRobot/SER0056?qs=sG

AEpiMZZMv0NwlthflBiyy1cZtCJti

Ge7ORwfYwunA%3D  

https://uk.rs-online.com/web/p/aa-

batteries/1974299  

https://uk.rs-

online.com/web/p/battery-

holders/6119605  

https://www.amazon.co.uk/gp/pro

duct/B00RF2W5OA/ref=ppx_yo_d

t_b_asin_title_o05_s00?ie=UTF8

&psc=1  

https://thepihut.com/products/ste

mma-qt-qwiic-jst-sh-4-pin-cable-

100mm-long  

https://www.mouser.co.uk/ProductDetail/DFRobot/SER0056?qs=sGAEpiMZZMv0NwlthflBiyy1cZtCJtiGe7ORwfYwunA%3D
https://www.mouser.co.uk/ProductDetail/DFRobot/SER0056?qs=sGAEpiMZZMv0NwlthflBiyy1cZtCJtiGe7ORwfYwunA%3D
https://www.mouser.co.uk/ProductDetail/DFRobot/SER0056?qs=sGAEpiMZZMv0NwlthflBiyy1cZtCJtiGe7ORwfYwunA%3D
https://www.mouser.co.uk/ProductDetail/DFRobot/SER0056?qs=sGAEpiMZZMv0NwlthflBiyy1cZtCJtiGe7ORwfYwunA%3D
https://uk.rs-online.com/web/p/aa-batteries/1974299
https://uk.rs-online.com/web/p/aa-batteries/1974299
https://uk.rs-online.com/web/p/battery-holders/6119605
https://uk.rs-online.com/web/p/battery-holders/6119605
https://uk.rs-online.com/web/p/battery-holders/6119605
https://www.amazon.co.uk/gp/product/B00RF2W5OA/ref=ppx_yo_dt_b_asin_title_o05_s00?ie=UTF8&psc=1
https://www.amazon.co.uk/gp/product/B00RF2W5OA/ref=ppx_yo_dt_b_asin_title_o05_s00?ie=UTF8&psc=1
https://www.amazon.co.uk/gp/product/B00RF2W5OA/ref=ppx_yo_dt_b_asin_title_o05_s00?ie=UTF8&psc=1
https://www.amazon.co.uk/gp/product/B00RF2W5OA/ref=ppx_yo_dt_b_asin_title_o05_s00?ie=UTF8&psc=1
https://thepihut.com/products/stemma-qt-qwiic-jst-sh-4-pin-cable-100mm-long
https://thepihut.com/products/stemma-qt-qwiic-jst-sh-4-pin-cable-100mm-long
https://thepihut.com/products/stemma-qt-qwiic-jst-sh-4-pin-cable-100mm-long
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A.4 Risk Assessment 

  Due to the highly practical and hands-on nature of this project, where many 

manufacturing facilities and workshops were required to be utilised to realise the final 

tangible product, training was undergone prior to using their respective facilities to 

ensure a high standard of health and safety was upheld at all times. 

  An induction was held for the design workshop, wherein appropriate precautions were 

underlined before using the Pillar drill and bandsaw, and various other tools and 

equipment on site. 

  An induction was held for the electronics workshop, where a guided tutorial on soldering 

was performed, ensuring good practices and safety precautions were followed. An 

introduction to the use of an oscilloscope and signal generators was also performed, 

although not utilised in this project. 

  An induction was also performed to learn how to operate the self-service 3D printers in 

the design workshop, although this was also not utilised for the project. 

  Prior to utilising any of the aforementioned facilities for the project, appropriate method 

statements and risk assessments were undertaken and approved before use to ensure 

the safety of the individual utilising the equipment and also personnel around and in the 

vicinity. This results in proper assessment of possible hazards in these environments, 

such as hot soldering irons causing fires, laser cutters causing blindness or hazardous 

fumes, reckless band saw usage causing injury, etc. These forms can be found below. 
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A.4.1 Risk Assessment Forms 

 A.4.1.1 Design workshop Method Statement 
 

Faculty of Engineering and the 
Environment 

Method Statement 

Title        

Design workshop activities for the building of a Bipedal Robot. 
 
Location of Activity 
    Tizard Building 13, Room 1055 

Date 

8/3/2022 
Assessor 
    Ryan Khoo Yeap Hong 
ryhk1a18 30480183 

Contact Details 
   ryhk1a18@soton.ac.uk 
 +44 0749 376 4830 

Supervisor 
Dr Suleiman Sharkh 
 

Contact Details 
   S.M.Sharkh@soton.ac.uk 

Introduction / Overview. 
   Background description to the project. What will you achieve? How will you do this? Why is 
this required? 

 
  A Bipedal robot is to be built, to do so, various workshop work will be done to enable 
the completion of the robot. This will be done in the Design workshop by utilising its 
tools and resources to: Laser cut acrylic/ply-wood pieces, assemble and modify them. 
Plastic 3D-printed parts may also be assembled and modified. This may involve simple 
drilling, sanding, cutting and deburring activities. 
 

Description of Task and how it will be carried out.   
   Including any diagrams, materials, samples and equipment to be used as applicable. 
 
  The main activity that will be carried out will be laser cutting parts and assembling 
them. This will involve placing material into the laser cutters in the workshop and 
operating them safely. Besides this, parts will also be assembled, with slight 
modifications possibly required, using the various tool available in the workshop, such 
as drilling, cutting and sawing. 

 
Control Measures including training, PPE 
   Identify significant hazards and actions/control measures to be taken. 
Hazards present include machinery used, Pillar drills, band saws and laser cutters, 
among other assorted tools. These pose a threat to safety if handled carelessly or 
misused, for example, potentially serious cuts from band saws, or blindness from stray 
lasers. Covered shoes are worn at all times to protect from falling items, and safety 
glasses will be utilised while laser cutters are in operation. 
  An official induction for the workshop was also attended to ensure adequate 
knowledge of how to utilise the various tools and equipment available prior to 
unsupervised activity. 

 
Emergency Arrangements 

  - 
Additional persons involved in activity 

  - 
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 A.4.1.2 Design workshop Risk Assessment 
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A.4.1.3 Electronics workshop Method Statement 
 

Faculty of Engineering and the 
Environment 

Method Statement 

Title        

Electronics work for the building of a Bipedal Robot. 
 
Location of Activity 
    Tizard Building 13, Room 3027 

Date 

1/2/2022 
Assessor 
    Ryan Khoo Yeap Hong 
ryhk1a18 30480183 

Contact Details 
   ryhk1a18@soton.ac.uk 
 +44 0749 376 4830 

Supervisor 
Dr Suleiman Sharkh 
 

Contact Details 
   S.M.Sharkh@soton.ac.uk 

Introduction / Overview. 
   Background description to the project. What will you achieve? How will you do this? Why is 
this required? 

 
  A Bipedal robot is to be built, to do so, various electronic work will be done to enable 
the completion of the robot. This will be done in the Electronics workshop by utilising 
its tools and resources to: cut and strip wires, solder wires together, apply heat shrink 
to protect the wires. Plastic 3D-printed parts may also be assembled and modified, this 
may involve simple drilling, sanding, cutting and deburring. 
 

Description of Task and how it will be carried out.   
   Including any diagrams, materials, samples and equipment to be used as applicable. 
 
  The main activity that will be carried out is splicing wires. This involves cutting the 
wires, stripping the insulation, twisting them together, soldering them together, and 
shrink wrapping a sleeve over the joint with a heat gun. 

 
 
Control Measures including training, PPE 
   Identify significant hazards and actions/control measures to be taken. 
Hazards present are soldering irons and heat guns, these tools will not be left turned 
on and unattended. They will also be stored properly when not in use (heat gun turned 
off, and soldering iron placed into its holder and no where else) 
  An official induction for the workshop was also attended to ensure adequate 
knowledge of how to utilise the various tools and equipment available. 

 
Emergency Arrangements 

  - 
Additional persons involved in activity 

  - 
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A.4.1.4 Electronics workshop Risk Assessment 
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A.5 Full Controller State Commands 
State State 

Number 
Sub-States 
(magnitude) 

Description 

Joy N 10 10-19 Walk forward 

Joy NE 20 20-29 Turn Right 

Joy E 30 30-39 Stride right 

Joy SE 40 40-49  

Joy S 50 50-59 Walk Backwards 

Joy SW 60 60-69  

Joy W 70 70-79 Stride Left 

Joy NW 80 80-89 Turn Left 

Z button 90 -  

C Button 100 -  

C + Joy Pitch 110 110-119 Manual Spine Pitch Joy +-30 
degrees 

C + Joy Roll 120 120-129 Manual Spine roll Joy +-45 
degrees 

C+ Joy Left and 
right 

130 130-139 Manual Spine Look Left and right 
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A.6 MATLAB Code 
 

fuzzyLogicFile = Direction_Control ; %name of fuzzy logic file to be 

utilised for output 

outputSize = 51; %Size of output array, Fuzzy Logic surface will scale 

accordingly 

%output size should be an odd number to allow a middle number 

  

arraySize = outputSize -1; 

increment = 200/arraySize; 

fileID = fopen('Fuzzy Logic Lookup Table Output.txt','w'); 

  

fprintf(fileID, "const int16_p PROGMEM fuzzTable [%.0f][%.0f] = { \n 

",arraySize+1,arraySize+1); 

for y = -100:increment:100 

%print a row of variables 

fprintf(fileID, "{"); 

for x = -100:increment:100 

    fprintf(fileID, "%.0f", evalfis(fuzzyLogicFile,[x y])); %Round 

number to closest whole number  

    if x < 100 

        fprintf(fileID, ", "); 

    end   

end 

 fprintf(fileID, "}, \n  "); 

end 

fprintf(fileID, "}; \n"); 

  

buffer = extractFileText("Fuzzy Logic Lookup Table Output.txt"); 

disp(buffer); 

  

fprintf("Center index: %f \n", arraySize/2); 

 

 

 

A.7 Speed Test data 
Speed tests  Time taken to travel 700mm (s) Speed (mm/s) 

Test 1 24 29.167 

Test 2 21 33.333 

Test 3 27 25.926 

Test 4 22 31.818 

Test 5 24 29.167 

Test 6 25 28.000 

Averaged 23.833 29.371 
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A.8 Arduino Code: 
 

  An Arduino library by (Madison 2021) was utilised to streamline the communication with 

the Nintendo “nunchuck” controller via an I2C interface.  

[Accessed 29/4/2022] Available at: https://github.com/dmadison/NintendoExtensionCtrl  

  The in-built Arduino wire library was used to enable communication with “I2C” (Inter-

Integrated Circuit) devices. 

 [Accessed 29/4/2022] Available at: https://www.arduino.cc/en/reference/wire  

  A library by Adafruit was utilised to interface with the servo driver. 

 [Accessed 29/4/2022] Available at: https://github.com/adafruit/Adafruit-PWM-Servo-

Driver-Library 

  A library by Megunolink was utilised to simplify the implementation of the exponential 

filter.  

[Accessed 29/4/2022] Available at: https://www.megunolink.com/documentation/arduino-

library/  

  A library by Adafruit was utilised to interface with the IMU.  

[Accessed 29/4/2022] Available at: https://github.com/adafruit/Adafruit_ICM20X  

  A library was utilised to streamline the implementation of storing and retrieving data 

from the program flash memory to free up SRAM. 

 [Accessed 29/4/2022] Available at:  https://github.com/Chris--A/PGMWrap  

 

A.8.1 Controller Code 
 

//Ryan Khoo 2022, Bipedal Robot Controller Code 
 
#include <NintendoExtensionCtrl.h> 
Nunchuk nchuk; 
  
int green = 8; //Red LED pin (0 for ON) 
int red = 7; //Orange LED pin 
 
void setup() { 
  Serial.begin(9600); 
  nchuk.begin(); 
  nchuk.connect(); 
   
  pinMode(red, OUTPUT); 

https://github.com/dmadison/NintendoExtensionCtrl
https://www.arduino.cc/en/reference/wire
https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library
https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library
https://www.megunolink.com/documentation/arduino-library/
https://www.megunolink.com/documentation/arduino-library/
https://github.com/adafruit/Adafruit_ICM20X
https://github.com/Chris--A/PGMWrap
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  pinMode(green, OUTPUT); 
  digitalWrite(green, 1);//green light starts off 
  digitalWrite(red, 1);//red light starts off 
} 
 
void loop() { 
 
  nchuk.update(); 
  //Obtain Current State of remote 
  int Cbutton = nchuk.buttonC(); 
  int Zbutton = nchuk.buttonZ(); 
  int Xvalue = nchuk.joyX();//0-255, middle at 129 
  int Yvalue = nchuk.joyY();//middle at 126 
  int Roll = nchuk.rollAngle(); 
  int Pitch = nchuk.pitchAngle(); 
  //Serial.print("Yvalue:");Serial.println(Yvalue); 
 
 
 
  //Manual Look control red light mode 
  if (Cbutton == 1){  
    digitalWrite(red, 0); //red light on 
    //Manual Pitch 
    int pitchCommand = map(Pitch,-30,30,110,119); 
    if (pitchCommand >=110 && pitchCommand <= 119){ 
      Serial.write(pitchCommand);//-------------------------------------------
Command Send 
    } 
    //Manual Roll 
    int rollCommand = map(Roll,-45,45,120,129); 
    if (rollCommand >=120 && rollCommand <= 129){ 
      Serial.write(rollCommand);//-------------------------------------------
Command Send 
    } 
    //Manual Look left and right 
    int lookCommand = map(Xvalue,0,253,130,139); 
    if (lookCommand >=130 && lookCommand <= 139){ 
      Serial.write(lookCommand);//-------------------------------------------
Command Send 
    } 
  } 
 
  //normal joy operation 
 
    //green light when joy moved 
    if(((Xvalue > 130 or Xvalue < 127)or((Yvalue > 127 or Yvalue < 125))) && 
Cbutton==0 && Zbutton ==0){ 
      digitalWrite(green, 0);//green light on 
 
    //Forward 
    int forwardCommand = map(Yvalue,129,255,10,19); 
    if (forwardCommand >12 && forwardCommand <= 19){ 
      Serial.write(forwardCommand);//-----------------------------------------
--Command Send 
      //Serial.println(forwardCommand); 
       
    } 
        //Back 
    int backCommand = map(Yvalue,0,126,59,50); 
    if (backCommand >52 && backCommand <= 59){ 
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      Serial.write(backCommand);//-------------------------------------------
Command Send 
      //Serial.println(backCommand); 
       
    } 
        //Right 
    int rightCommand = map(Xvalue,126,254,30,39); 
    if (rightCommand >32 && rightCommand <= 39){ 
      Serial.write(rightCommand);//-------------------------------------------
Command Send 
      //Serial.println(rightCommand); 
       
    } 
 
        //Left 
    int leftCommand = map(Xvalue,0,125,79,70); 
    if (leftCommand >72 && leftCommand <= 79){ 
      Serial.write(leftCommand);//-------------------------------------------
Command Send 
      //Serial.println(leftCommand); 
       
    } 
    delay(100); 
 
 
       
    } 
  
  //temp z button activation 
  if (Zbutton == 1){ 
    digitalWrite(green, 0);//yellow light on 
    digitalWrite(red, 0); 
  } 
 
 
 
  //Yellow for Z button and green for normal moving operation 
 
 
 
//Turn off lights if nothing pressed 
  if (Yvalue==126 && (Xvalue==129 or Xvalue==128) && Zbutton==0 && Cbutton == 
0){ 
    digitalWrite(green, 1);//green light off 
    digitalWrite(red, 1);//red light off 
  } 
  delay(30); //delay to avoid overloading bluetooth bus 
} 
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A.8.2 Robot Code 
 

// Ryan Khoo Yeap Hong | 30480183 | Year 3 Individual Project | 
Academic year 2021/2022 | ryankhoo@ymail.com | ryhk1a18@soton.ac.uk  
#include <Wire.h> 
Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver(); 
#include <Adafruit_ICM20948.h> 
Adafruit_ICM20948 icm; 
Adafruit_Sensor *icm_gyro, *icm_mag, *icm_accel; 
#include <PGMWrap.h> 
#include "Filter.h" 
 
//Changeable Parameters 
00000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000 
 
//Walking pattern progress tracked by: 
int cycleStage ;  
int mode = 9; //<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--
<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<-
- 
// 0 to disable all cycles (for debugging) 
// 9 to begin in dynamic neutral 
// 1 for normal operation 
// 10 to enable servo initialisations  
// 20 for neutral position 
// 30 for custom test position 
 
//Servo execution speed (in miliseconds between each state execution, 
smaller number = faster execution) 
int setDelayX = 2; //Default = 2, the time between each "eating" of a 
pending set, minimum depends on how fast void loop can execute 
int setDelay = 2;// Code usues this variable, but "X" version is to 
allow initialisation to go slower before main loop 
 
//Delay between IMU measurements 
int IMUDelay = 20; 
 
// footstep set modifiers 
int emptyMod = 40; // Default = 40, 0 to 100, adjusts height of empty 
step, mostly unchanged. 
int xMod = 0; //-100 to 100, degree of forward stepping 100 = front 
full, set by code 
int yMod = 0; //-100 to 100, degree of side stepping 100 = right full, 
set by code 
 
const int gaitAngle = 10; // Default = 20, the angle that the legs will 
swing forward and back, smaller angles require less torque, 50 for demo 
const int gaitSideAngle = -10; // Default = 20, the angle that the legs 
will Left and Right, smaller angles require less torque, 50 for demo 
 
//max divisions possible, may need to be reduce depending on memory 
use, the higher the better/smoother. 
const int maxDivisions = 10; 
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//when both X and Y modifiers are below stillThreshold, robot will 
stand still 
int stillThreshold = 20; 
 
//Modifier Weightages (100 = 1) 
int fuzzWeight = 100; 
int controllerWeight = 100; 
 
//Filter Weights 
ExponentialFilter<float > filteredRoll(5, 0); 
ExponentialFilter<float> filteredPitch(5, 0); 
ExponentialFilter<float > filteredAngVelX(5, 0); 
ExponentialFilter<float > filteredAngVelY(8, 0); 
 
//000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000000000000000000000000000000
00000000000000000000000000000000000000000000 
//111111111111111111111111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111111 
//Movement sets  
//Time Variable may be added in the tenth slot [9], values are in 
divisions. i.e. a value of 10 would mean 10 divisions between the 
previous state and the new input set,  
//more divisions = slower, time to assume new state in microseconds: t 
= divisions * setDelay 
 
//Initialisation sets -------------------------------------------------
----------------------------- 
const int16_p PROGMEM startServoState[]   = {0,0,0,0,0,0,0,0,0,1}; // 
Intant recenter, To neutral position at max speed CURRENTLY UNUSED 
const int16_p PROGMEM neutralServoState[] = {0,0,0,0,0,0,0,0,0,10};// 
Servos centered, with last variable the time variable 
const int16_p PROGMEM maxServoState[]     = 
{100,60,100,100,60,100,0,0,0,10};// Servos at full maximums 
const int16_p PROGMEM minServoState[]     = {-100,-100,-50,-100,-100,-
50,0,0,0,10};// Servos at full miniimums 
//Test Leg state  
const int16_p PROGMEM testServoState[] = {0,0,100,0,0,100,0,0,0,6};// 
ONLY for testing 
 
//Empty walking sets, defines time variable, other sets time value = 0 
-----------------------------------------------------------------------
----------- 
// int emptyMod = 100 This is above in changable states, adjusts height 
of step 
//Only empty sets have a time value to differentiate durations of 
various stages 
//                                          L    L   L   R    R   R   M   
M   M   t 
const int16_p PROGMEM empty1ServoState[] = {0,   0,  0, -50, -40, 0, -
20, 0, 20,  4}; // retracted right leg 
const int16_p PROGMEM empty2ServoState[] = {0,   0,  0, -50, -40, 0, -
10, 0, 20,  4}; 
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const int16_p PROGMEM empty3ServoState[] = {0,   0,  0,  0,   0,  0,  
0,  0,  0,  6}; 
const int16_p PROGMEM empty4ServoState[] = {0,   0,  0,  0,   0,  0,  
0,  0,  0,  6}; 
const int16_p PROGMEM empty5ServoState[] = {-50,-40, 0,  0,   0,  0, 
20,  0, -20, 4}; //retracted left leg 
const int16_p PROGMEM empty6ServoState[] = {-50,-40, 0,  0,   0,  0, 
10,  0, -20, 4}; 
const int16_p PROGMEM empty7ServoState[] = {0,   0,  0,  0,   0,  0,  
0,  0,  0,  6}; 
const int16_p PROGMEM empty8ServoState[] = {0,   0,  0,  0,   0,  0,  
0,  0,  0,  6}; 
//Front-back walking sets ---------------------------------------------
-----------------------------------------------------------------------
---------- 
const int GD = gaitAngle/10; //GD = Gait division 
const int16_p PROGMEM x1ServoState[] = {0,GD*-1,0,0,GD*5,0,0,0,0,0}; 
const int16_p PROGMEM x2ServoState[] = {0, GD*1,0,0,GD*-5,0,60,0,0,0}; 
const int16_p PROGMEM x3ServoState[] = {0, GD*3,0,0,GD*-5,0,30,0,0,0}; 
const int16_p PROGMEM x4ServoState[] = {0, GD*5,0,0,GD*-3,0,0,0,0,0}; 
const int16_p PROGMEM x5ServoState[] = {0, GD*5,0,0,GD*-1,0,0,0,0,0}; 
const int16_p PROGMEM x6ServoState[] = {0,GD*-5,0,0,GD*1,0,-60,0,0,0}; 
const int16_p PROGMEM x7ServoState[] = {0,GD*-5,0,0,GD*3,0,-30,0,0,0}; 
const int16_p PROGMEM x8ServoState[] = {0,GD*-3,0,0,GD*5,0,0,0,0,0}; 
//Left-right walking sets ---------------------------------------------
-----------------------------------------------------------------------
---------- 
 
const int GSD = gaitSideAngle/10; //GD = Gait side division, simmilar 
to above 
const int16_p PROGMEM y1ServoState[] = {0,0,GSD*-1,0,0,GSD*-5,0,0,0,0}; 
const int16_p PROGMEM y2ServoState[] = {0,0,GSD*1,0,0,GSD*5,0,0,0,0}; 
const int16_p PROGMEM y3ServoState[] = {0,0,GSD*3,0,0,GSD*5,0,0,0,0}; 
const int16_p PROGMEM y4ServoState[] = {0,0,GSD*5,0,0,GSD*3,0,0,0,0}; 
const int16_p PROGMEM y5ServoState[] = {0,0,GSD*5,0,0,GSD*1,0,0,0,0}; 
const int16_p PROGMEM y6ServoState[] = {0,0,GSD*-5,0,0,GSD*-1,0,0,0,0}; 
const int16_p PROGMEM y7ServoState[] = {0,0,GSD*-5,0,0,GSD*-3,0,0,0,0}; 
const int16_p PROGMEM y8ServoState[] = {0,0,GSD*-3,0,0,GSD*-5,0,0,0,0}; 
// --------------------------------------------------------------------
-----------------------------------------------------------------------
---------- 
//111111111111111111111111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111111111111111111111111
11111111111111111111111111111111111111111111111111111111111111111111111
111111111111111111 
// Constant parameters and various other variable definitions 
22222222222222222222222222222222222222222222222222222222222222222222222
22222222222222222222222222222222222222222222222222222222222222222222222
2222222222222222222222 
 
//Servo Numbers -------------------------------------------------------
-----------------------------------------------------------------------
-------------------------------------- 
const int16_p PROGMEM  LKneeServo = 0; 
const int16_p PROGMEM  LHipServo = 1; 
const int16_p PROGMEM  LHipSideServo = 2; 
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const int16_p PROGMEM  RKneeServo = 15; 
const int16_p PROGMEM  RHipServo = 14; 
const int16_p PROGMEM  RHipSideServo = 13; 
const int16_p PROGMEM  lookServo = 4; 
const int16_p PROGMEM  pitchServo = 5; 
const int16_p PROGMEM  rollServo = 6; 
//the above in a set for utilisations in fucntions: 
const int servoSet[] = {LKneeServo, LHipServo, LHipSideServo, 
RKneeServo, RHipServo, RHipSideServo, lookServo, pitchServo, 
rollServo}; 
 
//Calibration for centers of servos, i.e. neutral angular positions,  -
-----------------------------------------------------------------------
---------------------------------------- 
const int16_p PROGMEM  LKneeCenter = 100; //clockwise looking left 
const int16_p PROGMEM  LHipCenter = 88+2; 
const int16_p PROGMEM  LHipSideCenter = 90; //lowet, inner leg 
const int16_p PROGMEM  RKneeCenter = 165; //counterclockwise looking 
left 
const int16_p PROGMEM  RHipCenter = 90-2; 
const int16_p PROGMEM  RHipSideCenter = 85;//Higher, leg goes towards 
center line 
const int16_p PROGMEM  lookCenter = 93;//lower look right 
const int16_p PROGMEM  pitchCenter = 88;//lower for higher head 
const int16_p PROGMEM  rollCenter = 95; 
//the above in a set for utilisations in fucntions: 
const int servoCenter[] = { LKneeCenter, LHipCenter, LHipSideCenter, 
RKneeCenter, RHipCenter, RHipSideCenter, lookCenter, pitchCenter, 
rollCenter};// Servo centers in a set 
 
//Movement ranges, maximum degrees of movement for each joint ---------
-----------------------------------------------------------------------
------------------------------------- 
const int16_p PROGMEM  LKneeRange = 50;//range of degrees of Left Knee 
servo is +-60 
const int16_p PROGMEM  LHipRange = 50; 
const int16_p PROGMEM  LHipSideRange = 40; 
const int16_p PROGMEM  RKneeRange = -50; 
const int16_p PROGMEM  RHipRange = -50; 
const int16_p PROGMEM  RHipSideRange = -40; 
const int16_p PROGMEM  lookRange = 30; 
const int16_p PROGMEM  pitchRange = 30; 
const int16_p PROGMEM  rollRange = 35; 
//the above in a set for utilisations in fucntions: 
const int servoRange[] = {LKneeRange, LHipRange, LHipSideRange, 
RKneeRange, RHipRange, RHipSideRange, lookRange, pitchRange, 
rollRange};// Servo ranges in a set 
 
//initial command state sent over bluetooth 
int state = 0; 
 
//needed for delayed set execution loop below 
int timeOfLastLoop = 0; 
//needed for delayed IMU measurement loop below 
int timeOfLastIMU = 0; 



Ryan Khoo Yeap Hong 

83 
 

float accAngleX, accAngleY, gyroAngleX, gyroAngleY, gyroAngleZ, yaw, 
roll, pitch; 
  float GyroX; 
  float GyroY; 
//needed for delayed ultrasonic measurement loop below, in microseconds 
int updateDistance = 0; //is set to 1 when distance needs to be 
updated. 
int timeOfLastUltra = 0; 
int ultraState = 0; //controls if the ultrasonic sensor is resting or 
pulsing for 10 microseconds. 
int distanceSensed; //global variable storing distance of obastacle 
sensend by ultrasonic sensor, updates every 20 microseconds. 
 
//temporary memory of its current position, for calculation of eased 
servo movement to the new state 
int oldSet[] = {0,0,0,0,0,0,0,0,0,1}; //old set starts with neutral 
positions 
 
//the "plate" of sets the code will need to "eat" one by one in the 
loop every setDelay amount of time. 
int pendingSet[maxDivisions+1][9]; 
  //pendingSet[maxDivisions][9] = 0; // This line is in setup, the 
maxdivisions value in the set states how many "edible" sets are 
currently being stored and can be "eaten" 
 
//Set that generate step writes to 
int generatedSet[10]; 
 
//variable to allow neutral position to be executed only once upon 
entering neutral position 
int enterNeutral = 1; 
 
//Lookup table for fuzzy logic 
const int16_p PROGMEM fuzzTable[51][51] = {  
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, 
-34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -17, -
17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
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17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -16, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-33, -33, -33, -33, -33, -33, -33, -33, -33, -33, -33, -33, -33, -
33, -33, -33, -32, -31, -30, -28, -27, -25, -24, -23, -21, -20, -18, -
17, -16, -16, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},  
  {-31, -31, -31, -31, -31, -31, -31, -31, -31, -31, -31, -31, -31, -
31, -31, -31, -31, -30, -29, -28, -26, -25, -23, -22, -21, -19, -18, -
17, -16, -15, -15, -14, -14, -14, -14, -14, -13, -13, -13, -13, -13, -
13, -13, -13, -13, -13, -13, -13, -13, -13, -13},  
  {-29, -29, -29, -29, -29, -29, -29, -29, -29, -29, -29, -29, -29, -
29, -29, -29, -29, -29, -28, -27, -25, -24, -22, -21, -19, -18, -17, -
16, -15, -14, -14, -13, -13, -13, -13, -13, -12, -12, -12, -12, -12, -
12, -12, -12, -12, -12, -12, -12, -12, -12, -12},  
  {-26, -26, -26, -26, -26, -26, -26, -26, -26, -26, -26, -26, -26, -
26, -26, -26, -26, -26, -26, -25, -24, -22, -21, -19, -18, -17, -15, -
14, -14, -13, -12, -12, -12, -12, -11, -11, -11, -11, -11, -11, -11, -
11, -11, -11, -11, -11, -11, -11, -11, -11, -11},  
  {-23, -23, -23, -23, -23, -23, -23, -23, -23, -23, -23, -23, -23, -
23, -23, -23, -23, -23, -23, -23, -22, -21, -19, -18, -16, -15, -14, -
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13, -12, -11, -11, -11, -10, -10, -10, -10, -10, -10, -10, -10, -10, -
10, -10, -10, -10, -10, -10, -10, -10, -10, -10},  
  {-20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -
20, -20, -20, -20, -20, -20, -20, -20, -19, -17, -16, -15, -13, -12, -
11, -10, -10, -9, -9, -9, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -
8, -8, -8, -8, -8, -8, -8},  
  {-17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -
17, -17, -17, -17, -17, -17, -17, -17, -17, -15, -14, -13, -11, -10, -
9, -8, -8, -7, -7, -7, -7, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, 
-6, -6, -6, -6, -6, -6},  
  {-14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -13, -13, -12, -10, -9, -8, -7, 
-6, -5, -5, -5, -5, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, 
-4, -4, -4, -4, -4},  
  {-11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -
11, -11, -11, -11, -10, -10, -10, -10, -10, -10, -9, -8, -6, -5, -4, -
4, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 
-2, -2, -2, -2, -2},  
  {-7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, 
-7, -7, -7, -7, -7, -6, -5, -5, -3, -2, -1, -1, -0, 0, 0, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},  
  {-4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, 
-4, -4, -4, -3, -3, -3, -2, -1, -0, 1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4},  
  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 
-1, -1, -0, -0, 0, 1, 1, 2, 3, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7},  
  {2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 
4, 5, 6, 8, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 
11, 11, 11, 11, 11, 11, 11, 11, 11},  
  {4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 
7, 8, 9, 10, 12, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 14, 14, 14, 14, 14, 14, 14, 14, 14},  
  {6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 
9, 10, 11, 13, 14, 15, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 
17, 17, 17, 17, 17, 17, 17, 17, 17, 17},  
  {8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10, 
10, 11, 12, 13, 15, 16, 17, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20},  
  {10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 
10, 10, 11, 11, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 23, 23, 23, 
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23},  
  {11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 
12, 12, 12, 12, 13, 14, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 26, 26, 
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26},  
  {12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 
13, 13, 13, 14, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 29, 
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29},  
  {13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 
14, 14, 14, 15, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31, 
31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31},  
  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 14, 15, 15, 16, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 32, 
33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33},  
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  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 15, 15, 15, 16, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},  
  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},  
  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},  
  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},  
  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},  
  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},  
  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},  
  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},  
  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},  
  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},  
  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},  
  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},  
  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},  
  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},  
  {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32, 
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},  
  };  
 
//222222222222222222222222222222222222222222222222222222222222222222222
22222222222222222222222222222222222222222222222222222222222222222222222
22222222222222222222222222222222222222222222222222222222222222222222222
2222222222 
// Predefined Functions and calculations 
33333333333333333333333333333333333333333333333333333333333333333333333
33333333333333333333333333333333333333333333333333333333333333333333333
33333333333333333333333333 
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//Servodriver Pulse calculations --------------------------------------
-----------------------------------------------------------------------
------------------ 
int anglePulse (int angle){ 
  int Pulse = map(angle, 0, 180, 110, 400); 
  return Pulse; 
//, MIN pulse = 110, Max pulse = 610, pulse to 180*= 400 
} 
 
//executePosition function, Write position dataset to servos ----------
-----------------------------------------------------------------------
------------------------------------- 
void executePosition( int pendingSetIndex ){ 
  //Serial.println(F("executed positions")); 
  for (int i=0; i<9; i++){ 
    int writeDegree = map(pendingSet[pendingSetIndex][i], -100, 100, (-
servoRange[i]+servoCenter[i]), (servoRange[i]+servoCenter[i]) ); //maps 
the -100 to 100 input to the maximum and minimums of each servo 
    pwm.setPWM(servoSet[i], 0, anglePulse(writeDegree)); 
    //Serial.println(pendingSet[pendingSetIndex][i]); 
     
  } 
} 
 
//Assume position function --------------------------------------------
-----------------------------------------------------------------------
------------------------------------- 
//generates a new array of arrays into pendingSet that the loop will 
work through, Nature determines how the movement is performed, either 
Linear (0) or sine-eased (1) 
void assumePosition(int newSet[], int nature){ 
  //One servo number at a time 
//Serial.println("assumePosition() started"); 
 
//set of values to be added to pending sets once generated 
  int transitionArray[9][maxDivisions] ; 
  int divisions = newSet[9]; //the 9th value in a servo set is the time 
value 
 
  for (int servoNumber = 0; servoNumber<9;servoNumber++){ 
     
    //First, Multiplier array is made depending on the nature selected 
    float multiplierArray[maxDivisions]; 
    int oldValue = oldSet[servoNumber]; 
    int newValue = newSet[servoNumber]; 
    float increment = 0; 
 
    //Generate Multiplier Array 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
    if (nature == 0){//Linear movement, constant speed 
      increment = ( 1.0 / divisions); 
 
      for ( int i = 0; i < divisions ; i++){ 
        float multiplier = increment * (i+1); 
        multiplierArray[i] = multiplier; 
      } 
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    } 
    if (nature == 1){//Sin movement, deccelerate 
      increment = ( 1.570796 / divisions); 
 
      for ( int i = 0; i < divisions ; i++){ 
        float multiplier = sin(increment * (i+1) ); 
        multiplierArray[i] = multiplier; 
      } 
    } 
    if (nature == 2){//Cos movement, accelerate 
      increment = ( 1.570796 / divisions); 
 
      for ( int i = 0; i < divisions ; i++){ 
        float multiplier = (cos((increment * (i+1))+ 3.1415926 )) + 1; 
        multiplierArray[i] = multiplier; 
      } 
    } // Multiplier array now generated 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
 
    //make column of values for current servo it is calculating 
    for ( int i = 0; i < divisions ; i++){ 
       
      int value = oldValue + ((newValue-oldValue)*multiplierArray[i]); 
      transitionArray[servoNumber][i] = value;   
      } 
  }// end of respective servo number loop 
 
 
//write to pending sets from transition array, transposing matrix 
  for ( int i = 0; i < divisions ; i++){ 
    for ( int s = 0; s < 9 ; s++){ 
      pendingSet[divisions-i-1][s] = transitionArray[s][i]; 
      //Serial.println(pendingSet[divisions-i-1][s]); 
    } 
    //Serial.print("one pending set added at index: "); 
    //Serial.println(divisions-i-1); 
  } 
pendingSet[maxDivisions][8] = divisions;//tell pending set how many 
things there are to "eat"  
 
//make oldSet = newSet 
  for (int i=0; i<9; i++){ 
    oldSet[i] = newSet[i]; 
  } 
 
} // end of assume position function 
 
//Step Direction Combining --------------------------------------------
-----------------------------------------------------------------------
-----------------------------------------------------------------------
------ 
//takes all 3 sets and their modifiers/weightages and updates 
"generatedSet" to be the new set to be written 
void generateSet( int set1[] , int set1Mod , int set2[] , int set2Mod 
,int set3[] , int set3Mod ){ 
  // 10 values to combine and output, modifiers are 0-100,  
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  for (int i=0; i<9; i++){ 
    int newValue = (set1[i]*set1Mod) + (set2[i]*set2Mod) + 
(set3[i]*set3Mod); 
    generatedSet[i] = newValue / 100; 
  } 
  generatedSet[9] = set1[9]; 
   
//    for (int i=0; i<10; i++){ 
//    Serial.print(outputSet[i]); 
//    Serial.print(", "); 
//  } 
//  Serial.println(" "); 
   
} 
 
 
//333333333333333333333333333333333333333333333333333333333333333333333
33333333333333333333333333333333333333333333333333333333333333333333333
33333333333333333333333333333333333333333333333333333333333333333333333
333333333333 
//444444444444444444444444444444444444444444444444444444444444444444444
44444444444444444444444444444444444444444444444444444444444444444444444
444444444444444444444444444444444444444444 
 
 
 
//Setup  
void setup() { 
  Serial.println(F("Void Setup Begin.")); 
  Serial.begin(9600); 
   
  pwm.begin();//ServoDriver Required 
  pwm.setPWMFreq(60);  // This is the maximum PWM frequency 
  yield(); 
 
  //Wait for IMU to initialise 
  if (!icm.begin_I2C()) { 
    Serial.println(F("Failed to locate ICM20948 chip")); 
    while (1) { 
      delay(10); 
    } 
  }   
  icm_gyro = icm.getGyroSensor(); //Initialise Gyro 
  icm_mag = icm.getMagnetometerSensor(); //Initialise Magnetometer 
  icm_accel = icm.getAccelerometerSensor(); 
 
  pinMode(10, OUTPUT); //ultrasonic sensor pin initialisation 
  pinMode(11, INPUT); 
 
 
  int bufferSet[10]; 
  for (int i=0; i<10; i++){ bufferSet[i] = neutralServoState[i]; }  
   assumePosition(bufferSet, 1); 
   cycleStage = mode; // Primes cycle stage to begin, starts with 
dynamic neutral stage 9 
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   delay(3000); //3 seconds to place robot on surface before IMU takes 
calibration data of "flat surface" 
 
 
} //end of setup  
 
//444444444444444444444444444444444444444444444444444444444444444444444
44444444444444444444444444444444444444444444444444444444444444444444444
44444444444444444444444444444444444444444444444444444444444444444444444
44444444444 
//555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555 
// Void Loop  
void loop() { 
 
//Serial.print("cycleStage: "); Serial.print(cycleStage); 
Serial.print(", xMod:"); Serial.print(xMod); Serial.print(", yMod:"); 
Serial.println(yMod);  
 
  //Serial.println(); 
  //check controller command data   
  //Read Command 
 if(Serial.available() > 0){ // Checks whether data is coming from the 
serial port 
    state = Serial.read(); // Reads the data from the serial port 
    //Serial.print("Bluetooth: "); Serial.println(state); 
 } 
  
    int currentTime = millis(); 
  //int timeOfLastIMU = 0; this line is in section 222222 
 
  //Start of ultrasonic sensor ----------------------------------------
------------------------- 
  if (updateDistance == 1){ 
  int microsecs = micros(); //micros utilised to avoid using 
delayMicroseconds() 
  int timeSinceLastUltra = microsecs - timeOfLastUltra; 
  if (timeSinceLastUltra >= 10){ //this if function runs every 10 
microseconds 
    if (ultraState == 0){ //turn on pulse 
      digitalWrite(10, HIGH); 
      ultraState = 1; 
    } 
    if (ultraState == 1){ //turns off pulse and records duration, 
returns distance 
      digitalWrite(10, LOW ); 
      int duration = pulseIn(11, HIGH); 
      distanceSensed = duration * 0.034 / 2; 
      //Serial.println(distanceSensed); 
      ultraState = 0; 
    } 
  } 
  updateDistance = 0; 
  } //End of ultrasonic sensor ----------------------------------------
------------------------- 
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  //Start of IMU 
***********************************************************************
***********************************************************************
*************************** 
  int timeSinceLastIMU = currentTime - timeOfLastIMU; 
  if (timeSinceLastIMU > IMUDelay - 1 ){ // Start of delayed IMU loop, 
be=ased on IMU delay 
  //Obtain updated IMU readings 
  sensors_event_t gyro; 
  sensors_event_t mag; 
  sensors_event_t accel; 
  icm_gyro->getEvent(&gyro); 
  icm_mag->getEvent(&mag); 
  icm_accel->getEvent(&accel); 
 
  float AccX = accel.acceleration.x;  
  float AccY = accel.acceleration.y; 
  float AccZ = accel.acceleration.z; 
  float MagX = mag.magnetic.x; 
  float MagY = mag.magnetic.y; 
  float MagZ = mag.magnetic.z; 
  GyroX = (gyro.gyro.x *57.3) +1.45;// convert to Deg/s, account for 
error. 1.45, these 2 are declared above 
  GyroY = (gyro.gyro.y *57.3) -0.19; 
  float GyroZ = (gyro.gyro.z *57.3) ; 
  // float roll, pitch; in variables 
 
  //Calculate position from acceleraometer data 
  accAngleX = (atan(AccY / sqrt(pow(AccX, 2) + pow(AccZ, 2))) * 180 / 
PI) +2.4; //error of 2.4 
  accAngleY = (atan(-1 * AccX / sqrt(pow(AccY, 2) + pow(AccZ, 2))) * 
180 / PI) -2.4;  
 
  //Calculate position from Gyro data 
  float elapsedTime = (timeSinceLastIMU / 1000.0); 
   
  gyroAngleX = gyroAngleX + GyroX * elapsedTime; // deg/s * s = deg 
  gyroAngleY = gyroAngleY + GyroY * elapsedTime; 
  yaw =  yaw + GyroZ * elapsedTime; 
 
  //Combine data for more accurate positiining w/out drift 
  pitch = 0.96 * gyroAngleX + 0.04 * accAngleX; 
  roll = 0.96 * gyroAngleY + 0.04 * accAngleY; 
 
  //Serial print X and Y positioning 
  //Serial.print(pitch);Serial.print(", "); 
//  Serial.print(roll); 
//  Serial.println(); 
 
    timeOfLastIMU = currentTime; 
  }//end of delayed IMU loop ---------------------------------------- 
 
//end of IMU 
***********************************************************************



Ryan Khoo Yeap Hong 

92 
 

***********************************************************************
*************************** 
 
//Produce Direction Information, Xmod and Ymod based on 3 inputs: 
ultrasonic sensor data, IMU/fuzzy logic, and control info 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
//First, map IMU outputs to fuzzy logic Crisp inputs. 
//Filter IMU data to avoid spikes/bumpiness from walking 
filteredPitch.Filter(pitch); //angle varies +-20 
filteredRoll.Filter(roll); //angle varies +-20 
filteredAngVelX.Filter(GyroX); // +-100 
filteredAngVelY.Filter(GyroY); // +-100 
 
//Map extremes of value into fuzzy logic crisp input table, update 
depending on size of lookup table 
int crispAngX = map(filteredPitch.Current() , -20,20,0,51); 
int crispAngY = map(filteredRoll.Current() , -20,20,0,51); 
int crispAngVelX = map(filteredAngVelX.Current() , -100,100,0,51); 
int crispAngVelY = map(filteredAngVelY.Current() , -100,100,0,51); 
 
//  Serial.print(GyroY);Serial.print(", "); 
//  Serial.print(filteredAngVelY.Current()); 
//  Serial.println(); 
 
//extract data from look-up table to get fuzzXmod and fuzzYmod 
int fuzzXmod; 
int fuzzYmod; 
if(crispAngX < 50 && crispAngX > 0 && crispAngY < 50 && crispAngY > 0 
&& crispAngVelX < 50 && crispAngVelX > 0 && crispAngVelY < 50 && 
crispAngVelY > 0 ){ //if statment to ensure values are within the 
bounds of lookuptable and does not extract random data from ram 
fuzzXmod = fuzzTable[crispAngX][crispAngVelX]; 
fuzzYmod = fuzzTable[crispAngY][crispAngVelY]; 
} 
 
//extract data from ultrasonic sensor 
int obstacleMod; 
if (distanceSensed < 20){ 
  obstacleMod = -20 ; //if less than 20cm, nudge backwards 
} 
if (distanceSensed >= 20){ 
  obstacleMod = 0 ;  
} 
 
//extract data from remote controller 
int controllerModX = 0; 
int controllerModY = 0; 
int controllerModXA = 0; 
int controllerModXB = 0; 
int controllerModYA = 0; 
int controllerModYB = 0; 
if (state >= 10 && state <= 19){ //front 
  int frontState = state - 10; 
    controllerModXA = frontState*3; //adds a maximum nudge of 30 to mod 
 } 
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if (state >= 50 && state <= 59){ //back 
  int backState = state - 50; 
    controllerModXB = -backState*3; //adds a maximum nudge of -30 to 
mod 
 } 
if (state >= 30 && state <= 39){ //right 
  int rightState = state - 30; 
    controllerModYA = rightState*3; //adds a maximum nudge of 30 to mod 
 } 
if (state >= 70 && state <= 79){ //left 
  int leftState = state - 70; 
    controllerModYB = -leftState*3; //adds a maximum nudge of -30 to 
mod 
 } 
 controllerModX = controllerModXA + controllerModXB; 
 controllerModY = controllerModYA + controllerModYB; 
  
 
 
//Serial.print("ControllerModX: 
");Serial.print(controllerModX);Serial.print(" ControllerModY: 
");Serial.println(controllerModY); 
 
//combine modifiers according to predetermined weights 
 
xMod = (fuzzXmod*fuzzWeight*2 + controllerModX*controllerWeight + 
obstacleMod*100)/100; 
yMod = (fuzzYmod*fuzzWeight*2 + controllerModY*controllerWeight)/100; 
 
//Xmod and Ymod found 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
 
// Stand at neutral: 
  if (cycleStage == 20 && pendingSet[maxDivisions][8] == 0){ 
    if (enterNeutral == 1){ 
    //extract set from PROGMEM into buffer set 
    int bufferSet[10]; 
  for (int i=0; i<10; i++){ bufferSet[i] = startServoState[i]; } 
    assumePosition(bufferSet, 0); 
    enterNeutral = 0; 
    } 
  } 
// Test State position: 
  if (cycleStage == 30 && pendingSet[maxDivisions][8] == 0){ 
     
    //extract set from PROGMEM into buffer set 
    int bufferSet[10]; 
  for (int i=0; i<10; i++){ bufferSet[i] = testServoState[i]; } 
   
    assumePosition(bufferSet, 0); 
  } 
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////first time initialisation loop ------------------------------------
---------------------------------- 
//int cycleStage == 10 this is in changeable variables 
  if (cycleStage == 10 && pendingSet[maxDivisions][8] == 0){ 
    //extract set from PROGMEM into buffer set 
    int bufferSet[10]; 
  for (int i=0; i<10; i++){ bufferSet[i] = minServoState[i]; } 
    assumePosition(bufferSet, 2); 
    cycleStage = 11; 
  } 
  if (cycleStage == 11 && pendingSet[maxDivisions][8] == 0){ 
//extract set from PROGMEM into buffer set 
    int bufferSet[10]; 
  for (int i=0; i<10; i++){ bufferSet[i] = maxServoState[i]; }   
    assumePosition(bufferSet, 0); 
    cycleStage = 12; 
  } 
  if (cycleStage == 12 && pendingSet[maxDivisions][8] == 0){ 
//extract set from PROGMEM into buffer set 
    int bufferSet[10]; 
  for (int i=0; i<10; i++){ bufferSet[i] = neutralServoState[i]; }  
    assumePosition(bufferSet, 1); 
    cycleStage = 1; // Primes cycle stage to begin 
  } 
////end of first time initialisation ----------------------------------
---------------------------------- 
 
 
//555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555
55555555555555555555555555555555555555555555555555555555555555555555555
555 
//666666666666666666666666666666666666666666666666666666666666666666666
66666666666666666666666666666666666666666666666666666666666666666666666
66666666666666666666666666666666666666666666666666666666666666666666666
66666666666666666666666666666666666666666666666666666666666666666666666
66 
 
 
//CYCLE STAGES 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++ 
 
//Dynamic Neutral, stands still when modifiers are low 
 
if (cycleStage == 9  && (not(xMod < stillThreshold && xMod > -
stillThreshold ) || not(yMod < stillThreshold && yMod > -
stillThreshold)) && pendingSet[maxDivisions][8] == 0) { //break out of 
neutral (stage 9) 
  cycleStage = 2; //moves rightfoot first 
  enterNeutral = 1; 
} 
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if ( (xMod < stillThreshold && xMod > -stillThreshold ) && (yMod < 
stillThreshold && yMod > -stillThreshold) && 
pendingSet[maxDivisions][8] == 0){ //forced into neutral 
  cycleStage = 9; 
  updateDistance = 1; //take distance measurements when stationary 
 
  //only write neutral positions once upon entering neutral 
  //int enterNeutral = 0; //this is in pre setup 
  if (enterNeutral == 1){ 
//extract set from PROGMEM into buffer set 
    int bufferSet[10]; 
  for (int i=0; i<10; i++){ bufferSet[i] = neutralServoState[i]; }  
    assumePosition(bufferSet, 1); 
    enterNeutral = 0; // prevents constant writing of neutral position 
during rest 
  } 
  } 
 
 
//Normal cycle stages 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++++++++++++ 
 
  if (cycleStage == 1 && pendingSet[maxDivisions][8] == 0){ 
    updateDistance = 1; //enables the ultrasonic sensor to obtain a 
distance reading. 
    setDelay = setDelayX; //makes setdelayX the chosen variable above 
instead of slower initialisation variable. 
    state = 0;// reset bluetooth data state 
     
 //Extract sets from PROGMEM into SRAM buffersets 
    int bufferSetA[10]; 
  for (int i=0; i<10; i++){ bufferSetA[i] = empty1ServoState[i]; } 
 
    int bufferSetB[10]; 
  for (int i=0; i<10; i++){ bufferSetB[i] = x1ServoState[i]; } 
 
    int bufferSetC[10]; 
  for (int i=0; i<10; i++){ bufferSetC[i] = y1ServoState[i]; } 
     
    generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC, 
yMod ); 
    assumePosition(generatedSet, 0); 
    cycleStage = 2; 
  } 
  if (cycleStage == 2 && pendingSet[maxDivisions][8] == 0){ 
  //Extract sets from PROGMEM into SRAM buffersets 
    int bufferSetA[10]; 
  for (int i=0; i<10; i++){ bufferSetA[i] = empty2ServoState[i]; } 
 
    int bufferSetB[10]; 
  for (int i=0; i<10; i++){ bufferSetB[i] = x2ServoState[i]; } 
 
    int bufferSetC[10]; 
  for (int i=0; i<10; i++){ bufferSetC[i] = y2ServoState[i]; } 
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    generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC, 
yMod ); 
    assumePosition(generatedSet, 0); 
    cycleStage = 3; 
  } 
  if (cycleStage == 3 && pendingSet[maxDivisions][8] == 0){ 
 //Extract sets from PROGMEM into SRAM buffersets 
    int bufferSetA[10]; 
  for (int i=0; i<10; i++){ bufferSetA[i] = empty3ServoState[i]; } 
 
    int bufferSetB[10]; 
  for (int i=0; i<10; i++){ bufferSetB[i] = x3ServoState[i]; } 
 
    int bufferSetC[10]; 
  for (int i=0; i<10; i++){ bufferSetC[i] = y3ServoState[i]; } 
    generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC, 
yMod ); 
    assumePosition(generatedSet, 0); 
    cycleStage = 4; 
  } 
  if (cycleStage == 4 && pendingSet[maxDivisions][8] == 0){ 
    state = 0;// reset bluetooth data state 
//Extract sets from PROGMEM into SRAM buffersets 
    int bufferSetA[10]; 
  for (int i=0; i<10; i++){ bufferSetA[i] = empty4ServoState[i]; } 
 
    int bufferSetB[10]; 
  for (int i=0; i<10; i++){ bufferSetB[i] = x4ServoState[i]; } 
 
    int bufferSetC[10]; 
  for (int i=0; i<10; i++){ bufferSetC[i] = y4ServoState[i]; } 
     
    generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC, 
yMod ); 
    assumePosition(generatedSet, 0); 
    cycleStage = 5; 
  } 
  if (cycleStage == 5 && pendingSet[maxDivisions][8] == 0){ 
//Extract sets from PROGMEM into SRAM buffersets 
    int bufferSetA[10]; 
  for (int i=0; i<10; i++){ bufferSetA[i] = empty5ServoState[i]; } 
 
    int bufferSetB[10]; 
  for (int i=0; i<10; i++){ bufferSetB[i] = x5ServoState[i]; } 
 
    int bufferSetC[10]; 
  for (int i=0; i<10; i++){ bufferSetC[i] = y5ServoState[i]; } 
     
    generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC, 
yMod ); 
    assumePosition(generatedSet, 0); 
    cycleStage = 6; 
  } 
if (cycleStage == 6 && pendingSet[maxDivisions][8] == 0){ 
//Extract sets from PROGMEM into SRAM buffersets 
    int bufferSetA[10]; 
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  for (int i=0; i<10; i++){ bufferSetA[i] = empty6ServoState[i]; } 
 
    int bufferSetB[10]; 
  for (int i=0; i<10; i++){ bufferSetB[i] = x6ServoState[i]; } 
 
    int bufferSetC[10]; 
  for (int i=0; i<10; i++){ bufferSetC[i] = y6ServoState[i]; } 
    generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC, 
yMod ); 
    assumePosition(generatedSet, 0); 
    cycleStage = 7; 
  } 
  if (cycleStage == 7 && pendingSet[maxDivisions][8] == 0){ 
//Extract sets from PROGMEM into SRAM buffersets 
    int bufferSetA[10]; 
  for (int i=0; i<10; i++){ bufferSetA[i] = empty7ServoState[i]; } 
   
    int bufferSetB[10]; 
  for (int i=0; i<10; i++){ bufferSetB[i] = x7ServoState[i]; } 
 
    int bufferSetC[10]; 
  for (int i=0; i<10; i++){ bufferSetC[i] = y7ServoState[i]; } 
     
    generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC, 
yMod ); 
    assumePosition(generatedSet, 0); 
    cycleStage = 8; 
  } 
   
    if (cycleStage == 8 && pendingSet[maxDivisions][8] == 0){ 
   //Extract sets from PROGMEM into SRAM buffersets 
    int bufferSetA[10]; 
  for (int i=0; i<10; i++){ bufferSetA[i] = empty8ServoState[i]; } 
 
    int bufferSetB[10]; 
  for (int i=0; i<10; i++){ bufferSetB[i] = x8ServoState[i]; } 
 
    int bufferSetC[10]; 
  for (int i=0; i<10; i++){ bufferSetC[i] = y8ServoState[i]; } 
    generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC, 
yMod ); 
    assumePosition(generatedSet, 0); 
    cycleStage = 1; 
  } 
//END OF CYCLE STAGE 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
//666666666666666666666666666666666666666666666666666666666666666666666
66666666666666666666666666666666666666666666666666666666666666666666666
66666666666666666666666666666666666666666666666666666666 
//777777777777777777777777777777777777777777777777777777777777777777777
77777777777777777777777777777777777777777777777777777777777777777777777
777777777777777777777777777777777777777777777777777777777 
 
//delayed code loop, code below only occurs once every setDelay() 
milliseconds to execute "edible" sets ---------------------------------
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-----------------------------------------------------------------------
--------- 
  //int currentTime = millis(); Already above 
  //int timeOfLastLoop = 0; this line is in section 222222 
   
  int timeSinceLastLoop = currentTime - timeOfLastLoop; 
   
//Code that "eats" and executes from the pending set   
  if (timeSinceLastLoop > setDelay -1){ 
 
    int availableSets = pendingSet[maxDivisions][8];// available set 
determines both the number of sets inpending sets to be executed, and 
the index of that set to be used (-1 because of zero indexing) 
    if (availableSets != 0){ 
      executePosition(availableSets-1); //takes the most right-side 
non-zero set and executes it 
      //RYAN, you may need to delete the set that has been "eaten" 
(15/3/22), nope, not needed (1/4/22) 
      pendingSet[maxDivisions][8] = (pendingSet[maxDivisions][8]) - 1 ; 
//number of "edible" sets now decreased by 1  
//      Serial.print("delayed loop ran, and pending sets = "); 
//      Serial.println(pendingSet[maxDivisions][8]); 
//      Serial.print("executed position in pendingSets indexed at: "); 
//      Serial.println((availableSets-1)); 
 
    } // end of if statement that eats pending set 
 
    timeOfLastLoop = currentTime; 
  }//end of delayed loop ----------------------------------------------
-----------------------------------------------------------------------
--------------------------------------------------- 
 
 
//Manual Pitch Control-------------------------------------------------
----------------------- 
 
//RYAN add that this can only occur if pavo is in stationary mode and 
break out of it back to normal balancing if it gets too unbalance while 
playing with it 
//manual pitch control 
 if (state >= 110 && state <= 119){ 
  int pitchState = state - 110; 
  int pitchDegree = map(pitchState, 9,0, (-
pitchRange+pitchCenter),(pitchRange+pitchCenter)); 
  pwm.setPWM(pitchServo, 0, anglePulse(pitchDegree)); 
   
 } 
//Manual Roll Control 
 if (state >= 120 && state <= 129  && cycleStage == 9){ 
  int rollState = state - 120; 
  int rollDegree = map(rollState, 0,9, (-
rollRange+rollCenter),(rollRange+rollCenter)); 
  pwm.setPWM(rollServo, 0, anglePulse(rollDegree)); 
 } 
 //Manual look Control 
 if (state >= 130 && state <= 139  && cycleStage == 9){ 
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  int lookState = state - 130; 
  int lookDegree = map(lookState, 0,9, (-
lookRange+lookCenter),(lookRange+lookCenter)); 
  pwm.setPWM(lookServo, 0, anglePulse(lookDegree)); 
 } 
 //--------------------------------------------------------------------
---------------------- 
 
} // End of Void Loop 
 
 
//                  ___________     .===. 
//                                 /-=(o=`. 
//                                | ,__.-"`` 
//        __________             _/ :  / 
//                      _..--""`  :   / 
//                   .-" : '    :    | 
//    __________   ."  :       :     ; 
//               ."  :       :       / 
//          _,.-" :     .  :        / 
//          `---'=-.,_;` '       ,=' 
//                     `:=-=.=-'====,_ 
//      _________       //`          `\\ 
//                     // 
//                    //        run Pavo run 
//                   `\=   
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A.9 Engineering Assembly Drawings 
(Full resolution A3 drawings found on page 102 and 103, omit these for A4 printing) 

  



Ryan Khoo Yeap Hong 

101 
 

 

 



 32.50 

 90.00 
 102.57 

 41.37 

1

2

3

 114.75 

 120.00 

 125.00 

A

DETAIL A (Internal View)

4

5

RYAN KHOO

RYAN KHOO

4/2022 1:1

N/A N/AThrid Year
Individual Project

Dr Suleiman
Sharkh

School of Engineering/

Mechanical EngineeringN/A
"PAVO" Bluetooth Controller

2 1 2 1 A

NO. PART QTY.
1 TOP HOUSING 1
2 BOTTOM HOUSING 1

3 NUNCHUCK 
CONTROLLER 1

4 AA BATTERY 
HOLDER 1

5 ARDUINO UNO 1

No OFF REVISIONDRAWING NUMBERASSEMBLY NUMBERSHEET

TITLE

Southampton
UNIVERSITY OF

Faculty of Engineering and the Environment

THE INFORMATION CONTAINED IN THIS DOCUMENT IS 
THE PROPERTY OF THE UNIVERSITY OF SOUTHAMPTON 

DO NOT COPY WITHOUT WRITTEN PERMISSION.

SURFACE FINISHTEXTUREMATERIALSUPERVISORPROJECT

IF IN DOUBT PLEASE ASK

REMOVE ALL SHARP EDGES

TOLERANCES UNLESS 
OTHERWISE STATED

DRAWN BY

DESIGNED BY

DATE SCALEDEPARTMENTEDMC JOB No

DO NOT SCALE

ALL DIMENSIONS IN mm UNLESS 
OTHERWISE  STATED

A3

ALL OVER UNLESS 
OTHERWISE STATED

LINEAR DIMENSIONS
X = +/- 0.5mm
X.X = +/- 0.25mm
X.XX = +/- 0.1mm
 
ANGULAR DIMENSIONS
X = +/- 0.5mm
X.X = +/- 0.25mm

SOLIDWORKS Educational Product. For Instructional Use Only.



 309.91 

 212.84 

A

14

14
12

17

16
111819

13

7

 442.65 

6
5

1717

2626

1

1

1

1

1

1

1

21

88

22

24

23

25

20

15

DETAIL A
SCALE 1 : 2

4

2

9

10

11

3 Ryan Khoo

Ryan Khoo

4/2022

"PAVO" Bipedal Robot
1:4

Thrid Year 
Individual Project

Dr Suleiman
Sharkh N/A N/A

B1 1 1 1

N/A School of Engineering/
Mechanical Engineering

NO. PART QTY.
1 SER0056 Servos 9
2 HC-SR04 Ultrasonic Sensor 1
3 Arduino Uno 1
4 HC-05 Bluetooth Module 1
5 ICM-20948 9-DoF IMU 1
6 Adafruit 16-Channel 12-bit PWM 

Servo Driver 1
7 AA Battery Holder 1
8 75mm RC Damper Suspension 2
9 Face Plate 1
10 Head Comb Wire Rail/Stabiliser 1
11 Kneck Base/Arduino Mount 1
12 Spine Joint 1
13 Tail/Battery Mount 1
14 5mm Threaded Rod (23cm) 2
15 Spine Tilt/Pitch 1
16 Spine Swivel 1
17 90 Degree Servo Joint 3
18 Wire guide 1
19 Main Hip 1
20 Right Foot 1
21 Left Foot 1
22 Right Upper Foot 1
23 Left Upper Foot 1
24 Right Shin 1
25 Left Shin 1
26 Laser-cut Acrylic Thigh 2 

No OFF REVISIONDRAWING NUMBERASSEMBLY NUMBERSHEET

TITLE

Southampton
UNIVERSITY OF

Faculty of Engineering and the Environment

THE INFORMATION CONTAINED IN THIS DOCUMENT IS 
THE PROPERTY OF THE UNIVERSITY OF SOUTHAMPTON 

DO NOT COPY WITHOUT WRITTEN PERMISSION.

SURFACE FINISHTEXTUREMATERIALSUPERVISORPROJECT

IF IN DOUBT PLEASE ASK

REMOVE ALL SHARP EDGES

TOLERANCES UNLESS 
OTHERWISE STATED

DRAWN BY

DESIGNED BY

DATE SCALEDEPARTMENTEDMC JOB No

DO NOT SCALE

ALL DIMENSIONS IN mm UNLESS 
OTHERWISE  STATED

A3

ALL OVER UNLESS 
OTHERWISE STATED

LINEAR DIMENSIONS
X = +/- 0.5mm
X.X = +/- 0.25mm
X.XX = +/- 0.1mm
 
ANGULAR DIMENSIONS
X = +/- 0.5mm
X.X = +/- 0.25mm

SOLIDWORKS Educational Product. For Instructional Use Only.


