

Theory, Design and Building of a

Bipedal Robot Based on the

Common Quail

FEEG3003: Individual Project

Ryan Khoo Yeap Hong

30480183

Supervised by Dr Suleiman Sharkh

April 2022

Word Count: ~10,850

This report is submitted in partial fulfilment of the requirements of the MEng Mechanical

Engineering, Faculty of Engineering and the Environment, University of Southampton.

Ryan Khoo Yeap Hong

1

Abstract

 Robots are vital to the functioning and automation of many modern processes. Many of

these robots are only able to perform their functions within the environments designed

around them. A better approach may be a robot designed around its environment Instead.

As most environments are already designed for bipedal humans, bipedal robots are

uniquely poised to fill this niche. Therefore, this report aims to explore and develop a

bipedal robot capable of semi-autonomous walking.

 A review of the literature surrounding bipedal robotics is performed and finds that bird-

based configurations may provide a better basis for the development of bipedal platforms

compared to human-based approaches due to lower centres of mass providing better

stability.

 Pavo, a 30cm tall robot inspired by the common quail (Coturnix Coturnix) is built with off-

the-shelf parts and 3D printing to reduce weight and costs. A novel control theory utilising

fuzzy logic is developed and implemented to reduce the computational power required. An

Arduino UNO is used to realise this control theory and execute the dynamic footsteps

required to enact balanced walking.

 Various complications are encountered throughout its development and are remedied or

future improvements suggested. Issues such as underpowered servos prevented a faithful

recreation of a quail gait cycle and full realisation of the fuzzy logic system. However, Pavo

is still able to demonstrate appropriate responses to external stimuli and ultimately shuffle

forward at a speed of 29.371mm/s.

Ryan Khoo Yeap Hong

2

Tabl e of C ontents

Table of Contents

Abstract ___ 1

Table of Contents ___ 2

Declaration ___ 4

Acknowledgements __ 5

Abbreviations, Figures and Tables _________________________________ 6

1. Introduction __ 10

1.1. History and Literature Review ___________________________________ 11

1.2. Project Aims and Objectives ____________________________________ 19

2. Design and Building ___ 20

2.1. Design Background __ 20

2.2. Hardware/Components ___ 22

2.3. Manufacture Details and Specifications ___________________________ 23

3. Control Theory and Programming ______________________________ 31

3.1. General Approach and Overview _________________________________ 31

3.2. Controller Code Theory/Bluetooth Communication __________________ 32

3.3. Fuzzy Logic __ 33

3.4. Code Details __ 36

3.4.1. Ultrasonic Sensor Implementation ______________________________ 36

3.4.2. IMU Implementation __ 37

3.4.3. Fuzzy Logic Implementation ___________________________________ 37

3.4.4. Servo Set Structure __ 38

3.4.5. Cycle Stages __ 39

3.4.6. Cycle Stage Control __ 41

3.4.7. Direction Defining and New Position Generation __________________ 42

3.4.8. Eased Position Transitions ____________________________________ 43

3.4.9. Pending Set Container and Periodic Position Execution ____________ 45

4. Results and Discussion ______________________________________ 47

Ryan Khoo Yeap Hong

3

4.1. Post-Assembly Adjustments ____________________________________ 47

4.1.1. SRAM Limitations ___ 47

4.1.2. Servo Torque Limitations __ 47

4.2. Results __ 49

4.3. Issues, Improvements and Future Work ___________________________ 53

4.3.1. Servo Torques and Power ___ 53

4.3.2. Improved Construction of the Robot ___________________________________ 53

4.3.3. Computing Power ___ 54

4.3.4. Bluetooth Communication ___ 56

4.3.5. Fuzzy Logic __ 56

4.3.6. Environmental Data/Feedback _______________________________________ 56

4.3.7. Gait/Walking Cycle __ 57

5. Conclusion___ 58

References __ 59

Appendix ___ 64

A.1 Video Figure Links ___ 64

A.2 Parts list and Costing __ 64

A.3 Software Utilised __ 65

A.4 Risk Assessment __ 66

A.4.1 Risk Assessment Forms __ 67

A.4.1.1 Design workshop Method Statement ____________________________________ 67

A.4.1.2 Design workshop Risk Assessment _____________________________________ 68

A.4.1.3 Electronics workshop Method Statement _________________________________ 71

A.4.1.4 Electronics workshop Risk Assessment __________________________________ 72

A.5 Full Controller State Commands ___________________________________ 74

A.6 MATLAB Code __ 75

A.7 Speed Test data ___ 75

A.8 Arduino Code: __ 76

A.8.1 Controller Code __ 76

A.8.2 Robot Code ___ 79

A.9 Engineering Assembly Drawings __________________________________ 100

Ryan Khoo Yeap Hong

4

Declaration

I, Ryan Khoo Yeap Hong declare that this thesis and the work presented in it are my own

and has been generated by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a degree at this

University;

2. Where any part of this thesis has previously been submitted for any other

qualification at this University or any other institution, this has been clearly stated;

3. Where I have consulted the published work of others, this is always clearly

attributed;

4. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have

made clear exactly what was done by others and what I have contributed myself;

7. None of this work has been published before submission.

Ryan Khoo Yeap Hong

5

Acknowledgements

 I would like to extend my sincere thanks to my supervisor, Dr Suleiman Sharkh, for his

continued and substantial support provided throughout this project, his guidance and

feedback were invaluable in determining the direction of the project and in overcoming

roadblocks/hardships faced.

 I would also like to express my gratitude to the technicians and persons in charge of the

design and electronics workshops at the University of Southampton for enabling the

manufacture and creation of the final product.

 I would also like to recognise the many individuals behind the literature referenced in this

work, and the countless hours of research and collaboration that have led to the current

state of the art, without which the project would not have been possible.

 And finally, I would like to acknowledge friends and family for providing their unwavering

moral support throughout the project.

Ryan Khoo Yeap Hong

6

Abbreviations, Figures and Tables

Abbreviations:

CoM - Centre of Mass

CoP - Centre of Pressure

DoF - Degrees of Freedom

SLIP - Spring-Loaded Inverted Pendulum

ZMP - Zero Moment Point

DS - Double Limb Support

SS - Single Limb Support

IMU - Inertial Measurement Unit

SEA - Series Elastic Actuators

BLDC - Geared Brushless Direct Current (Motors)

LIDAR - Light Detection and Ranging

CNC - Computer Numerical Control

LED - Light Emitting Diode

SRAM - Static Random-Access Memory

GPS - Global Positioning System

CPG - Central Pattern Generator

GD - Generative Design

PLA - Polylactic Acid

DMLS - Direct Metal Laser Sintering

Ryan Khoo Yeap Hong

7

Figures:

Figure 1: An Ocado “swarm” packing warehouse with wheeled robots (Grylls 2018) 10

Figure 2: A breakdown of the human walking gait (Lohman et al. 2011) 12

Figure 3: “WABOT-1” Bipedal robot by Waseda University (Takanishi 2019) 13

Figure 4: Left) Boston Dynamics’ “Atlas”, right) Agility Robotics’ “Cassie” (Ficht and

Behnke 2021; Reher, Ma, and Ames 2019) ... 14

Figure 5: Left) The NimbRo-OP2X robot, Right) Off-the-shelf servos in a 3D printed

assembly make up the robot’s hip joints (Ficht et al. 2018) .. 16

Figure 6: A full gait cycle of a common quail, experimentally obtained by Abourachid et

al. (2011) utilising high-speed video fluoroscopic recordings .. 18

Figure 7: A DoF diagram illustrating the placements of the servos with a centre “spine”

(in red) suspended between the two legs. Lengths obtained by Lepora et al. (2016) and

planes of movement possible for each servo labelled .. 21

Figure 8: The simplified damped spring inverted pendulum model with pivot point and

CoM labelled .. 21

Figure 9: a) An Arduino UNO, b) A Raspberry Pi (Carolo 2020) 22

Figure 10: a) Adafruit PCA9685 16-Channel Servo Driver (Earl 2012), b) Adafruit TDK

InvenSense ICM-20948 9-DoF IMU (Siepert 2020), c) SER0056 Servo, d) HC-SR04

ultrasonic distance sensor, e) Nintendo “nunchuck” controller, f) Spring damper

suspension, g) HC-05 Bluetooth serial transceiver module .. 23

Figure 11: a) overall view of Pavo with the axis sign conventions utilised in the remaining

report, b) Front view of Pavo, c) Top view of Pavo, d) Side view of Pavo 24

Figure 12: A side view of the finished robot .. 25

Figure 13: A labelled circuit diagram illustrating the connections between components

onboard Pavo .. 26

Figure 14: The “head” of Pavo .. 26

Figure 15: a) A top view of the hip, embedded IMU and servo driver b) A bottom view of

the hip .. 27

Figure 16: The “tail” of Pavo, housing the batteries and a power switch, both labelled ... 27

Figure 17: The middle section of Pavo with the spine joint and servos labelled.............. 28

Figure 18: The left foot assembly of Pavo with spring damper labelled 28

Figure 19: The foot of Pavo with the distances between the three contact points marked

 .. 29

Figure 20: The finished controller with remote.. 30

Figure 21: A labelled circuit diagram of the electronics in the controller 30

Figure 22: A high-level diagram illustrating the flow and functions of the control system

designed .. 32

Ryan Khoo Yeap Hong

8

Figure 23: Membership functions of crisp angle input .. 34

Figure 24: Membership functions of crisp angular velocity input 35

Figure 25: Output membership function plots utilising four fuzzy output variables.......... 35

Figure 26: An example of the fuzzy logic system in use with normalised inputs (Angle =

5, Angular velocity = -24), and resulting normalised crisp output of -13.6 36

Figure 27: The resulting fuzzy logic surface plot with crisp outputs on the vertical Z-axis

and crisp inputs of angle and angular velocity on the X and Y-axis 36

Figure 28: The raw roll value (blue) and the filtered, smoothed roll value (red) 38

Figure 29: The raw Y-axis gyro value (blue) and the filtered value (red), with the filter

effectively extracting a steady rhythm out of a noisy input resulting from the gait cycle of

Pavo .. 38

Figure 30: The structure of a position set utilised in the code, with nine servo values and

a tenth “divisions” value that determines the number of transitionary values to be

generated .. 39

Figure 31: Parallel number lines illustrating the mapping of true servo angles to their

normalised values utilised in the position sets with an example of a set value of 20

resulting in a servo angle of 139° ... 39

Figure 32: The resulting step pattern of eight “empty” sets combined with their eight

corresponding “front/back” sets, with the ground contacts indicated by a red “X” 41

Figure 33: A diagrammatic representation of the cyclic stage variable system 42

Figure 34: A graph illustrating various directions and magnitudes of movement derived

from the X and Y modifiers, with the vertical X-axis representing walking forward/back

relative to Pavo (pictured from above) ... 43

Figure 35: The three possible transitionary trends, a) Linear, b) Speeding up, c) Slowing

down, with an x-axis of time and y-axis of servo position, 0 representing the old state and

100 the new target state .. 44

Figure 36: Format of “pending sets” container array, with “x” denoting a servo position

value .. 45

Figure 37 A control diagram detailing how all the individual functions detailed above in

section 3 work together to imitate a CPG ... 46

Figure 38: Two views of the added rubber bands (blue) attached to the knee to aid the

servos, indicated by red arrows ... 48

Figure 39: A force/moment diagram illustrating the rubber band modification (blue)

counteracting weight induced moments ... 48

Figure 40: [VIDEO] A demonstration of the cyclic footstep functionality with slowed down

and exaggerated movements for a) walking front and b) stepping right (full links can be

found in the appendix (A.1) if embedded links are not functioning) 49

Ryan Khoo Yeap Hong

9

Figure 41: [VIDEO] A demonstration of Pavo’s ability to respond accordingly to angular

position and come to rest when rebalanced a) Tilting forwards and walking forward, b)

Tilting backwards and walking backwards, c) Tilting right and walking right, d) Tilting left

and walking left .. 50

Figure 42: [VIDEO] A demonstration of Pavo’s ability to respond to a sensed obstacle

and begin a backwards movement and stop when at a safe distance 50

Figure 43: [VIDEO] A demonstration of Pavo’s ability to respond to controller input

appropriately .. 51

Figure 44: [VIDEO] A demonstration of Pavo walking 70cm ... 51

Figure 45: [VIDEO] Six speed tests overlayed ... 52

Figure 46: [VIDEO] Five directional tests overlayed ... 52

Figure 47: A generatively designed calf prosthetic, reducing material cost and weight

while maintaining required strength (Rajput et al. 2021) ... 54

Figure 48: A size comparison of: a) Arduino DUE, b) The currently implemented Arduino

UNO, c) Raspberry Pi (Senese 2012) .. 55

Tables:

Table 1: A table illustrating the possible commands that are sent over Bluetooth 33

Table 2: A table showing the contact of each foot with the ground during the transitions

between the eight states, and the resulting single support (SS) or double support (DS)

state of a stage, with ground contact states indicated in grey ... 40

Table 3: A table describing the eight parts of each of the three sets, with “L” denoting the

left leg and “R” denoting the right leg. C1 represents the first contact of the foot with the

ground, C2, the second, and so on, until the leg is lifted during the swing phase,

indicated by “air” .. 40

Ryan Khoo Yeap Hong

10

1. Introduction

 The field of robotics has seen great strides in the past century. With the concept of useful

man-made automata jumping from the pages of early 20th-century science fiction into very

real, practical applications today (Carlos De Pina Filho and dos Santos Mota 2010).

Robots, in all their current forms, are ubiquitous in modern society, bringing unprecedented

automation into countless industries such as the automotive sector (Bartoš et al. 2021).

 A vital aspect of many of these robots is their mobility, such as to navigate a factory floor

or warehouse. In most industrial applications, these robots have been developed in

tandem with the environment they operate in, with their surroundings fitted with flat floors,

tracks, markers, etc. Such as seen in Figure 1; a highly automated packing warehouse

where neither wheeled robot nor environment can be used independently.

Figure 1: An Ocado “swarm” packing warehouse with wheeled robots (Grylls 2018)

 While systems such as these have been implemented with great success, they require

large investments, long construction times, and must be fully conceptualised from an early

stage of development. These highly-specialised robots are limited to the environments

designed around them, and will never be employed in the countless pre-existing

environments designed around humans.

 It may then be argued that robots designed around their environments instead would be

a more suitable approach, providing backwards compatibility that allows them to be readily

integrated into existing environments designed around bipedal humans.

 Therefore, a mobility solution that satisfies this design philosophy is bipedal robots.

Sufficiently advanced, bipedal robots can navigate the majority of environments that

Ryan Khoo Yeap Hong

11

humans currently operate in, doing so better than wheeled, threaded or even quadrupedal

robots. They are able to, for example, climb stairs, and navigate uneven surfaces and tight

areas that other mobility solutions cannot.

1.1. History and Literature Review

 To design bipedal robots, it is beneficial to first study and understand how this form of

movement is achieved in nature. Bipedalism in nature has been finetuned over millennia

to suit a specific organism’s needs and environments, be it for improved energy efficiency,

reaching higher places or freeing up other appendages for flying/tool-use, this provides a

strong foundation for engineers to develop upon (Hunt 2015; Lepora et al. 2016).

 The first, most obvious organism to study for the development of bipedal robots would be

ourselves; Homo Sapiens. Much work has been done breaking down and classifying the

various movement patterns of a generic human gait (Vaughan 2003). Many styles of

movement such as running or skipping can be achieved with this bipedal configuration.

However, this report will place a primary focus on walking as it is a logical starting point for

the development of bipedal robots.

 Walking is defined by Linden (2011) as “a repetitious sequence of limb motions to

simultaneously move the body forward while also maintaining stance stability” (van der

Linden 2011). A human walking cycle can be viewed as a series of motions punctuated by

distinct stages/positionings. Muscles use energy to both reposition the components of the

legs and accelerate/decelerate the masses involved (Hunt 2015). It is also important to

note that while each cycle is repetitive and similar, they are not the same in practice, with

minute adjustments applied to each step to maintain the system and avoid falling. The

human walk cycle can be broken down into two distinct stages; the stance and swing

stages, as can be seen in Figure 2 below by Lohman, Balan Sackiriyas, and Swen (2011).

Ryan Khoo Yeap Hong

12

Figure 2: A breakdown of the human walking gait (Lohman et al. 2011)

 Beginning with both feet in contact with the ground, known as double limb support (DS),

the “stance” stage encompasses the motions from initial DS, swinging a foot forward, and

resuming DS on contact with the ground. The “swing” phase then begins upon single limb

support (SS) once the other foot leaves the ground, and ends upon the re-establishing of

DS, this then begins a new “stance” stage and the cycle is repeated (Liu, Chen, and Chen

2019; Lohman et al. 2011).

 When considering the dynamics of the entire system during this cycle, it exhibits

properties similar to that of an inverted pendulum (Hunt 2015), which systems of bipedal

robot control can be based upon (Liu and Qian 2019), further discussed in this section

below.

 As discussed in the introduction, bipedal robots have been in the collective

consciousness of scientists and researchers for many decades (Carlos De Pina Filho et

al. 2010). However, bipedal robotics as we know it today only began development in

earnest in the late 1960s, with studies by researchers such as R.B. McGee beginning work

on theories of legged locomotion and algorithms capable of coordinating leg movements

(McGhee 1968). Completed in 1973, the WABOT-1, a 1.5-meter-tall robot by Japan-based

Waseda University was developed (seen in Figure 3), capable of emulating a pre-

programmed human gait, and is generally regarded as the first modern bipedal robot

(Bruemmer and Swinson 2003; Takanishi 2019; Vaughan 2003).

Ryan Khoo Yeap Hong

13

Figure 3: “WABOT-1” Bipedal robot by Waseda University (Takanishi 2019)

 Since then, substantial progress has been made in the development of bipedal robots,

culminating in the present state of the art, with robots such as Boston Dynamics’ Atlas and

Agility Robotics’ Cassie bipeds (Figure 4) showcasing some of the most sophisticated

implementations of bipedal robots thus far. Despite the tremendous work that has been

done, the field is far from stagnation and may still be considered relatively new (Ficht and

Behnke 2021; Liu et al. 2019).

Ryan Khoo Yeap Hong

14

Figure 4: Left) Boston Dynamics’ “Atlas”, right) Agility Robotics’ “Cassie” (Ficht and Behnke 2021; Reher,

Ma, and Ames 2019)

 While more challenging to develop and control, there is sufficient incentive behind the

development of these machines. As discussed above, a primary motivation is that bipedal

robots are potentially better suited to traverse terrain that more traditional movement

solutions such as wheels or threads cannot (Warnakulasooriya et al. 2012). Sufficiently

developed, bipedal robots would be able to traverse both natural and urban, human-centric

environments far more efficiently than any traditional solution. This advantage would

manifest itself in meaningful applications such as in hospitals, emergency response,

replacing humans in dangerous tasks or monitoring locations far from human habitation

(Carlos and Pina 2010; Liu et al. 2019; Xie et al. 2020). Bipedal robots may also find a

place in the domestic/civilian markets, with implementations such as entertainment,

delivery, waiting/hotel staff, and medical/household helpers. Developments in the field may

even find their way into other industries such as medical exo-skeletal aids (Aithal et al.

2021; Liu et al. 2019; Reis et al. 2020).

Ryan Khoo Yeap Hong

15

 Many different configurations have been utilised to create bipedal robots, with the

average speed and size of platforms increasing over the years as underlying technologies

constantly improve, enabling bigger, better robots to be constructed. Some designs only

incorporate legs, while others emulate entire humanoid forms. These robots also vary in

their use of biomimicry, with some utilising the bare minimum degrees of freedom (DoFs)

to realise bipedal movement, while others attempt to rival the whopping 30 DoFs present

in a single human leg (Aithal et al. 2021; Xie et al. 2020).

 Among the most important components in these robots are their actuators. Many

solutions exist and have been implemented. In earlier years, electrical actuators with high

ratio reducers were a common choice, offering a good balance between speed, torque and

size. As the field progressed and compliance increasingly deemed an important aspect of

bipedal robots (compliance further discussed below), alternative solutions such as series

elastic actuators (SEAs) were utilised in robots such as NASA’s Valkyrie platform. Other

solutions have also been employed such as geared brushless DC (BLDC) motors for their

small form factor and ability to provide torque feedback via current sensing. These mostly

electrical solutions are however not perfect, being susceptible to overheating and other

issues. Where these were deemed too detrimental, hydraulics has also been implemented

into bipedal systems and has seen success in implementations such as Boston Dynamics’

Atlas line, although not without their drawbacks such as leaks, noise and weight (Ficht and

Behnke 2021).

 Just as important are the feedback systems in place to allow for the system to respond

to and interact with its environments. A vital sensory component found in the majority of

bipedal robots is the inertial measurement unit (IMU), providing acceleration, position and

gyroscopic feedback to allow the system to predict its trajectories and compensate

accordingly to prevent falls. Another common feedback utilised is joint positioning data,

allowing the system to know exactly how it is configured at any one time, this data may be

gathered via highly accurate encoders or more traditional potentiometer-based solutions.

Other more niche forms of feedback are utilised by select robots, such as light detection

and ranging (LIDAR) systems or camera systems like those used in Honda’s ASIMO

(Carlos De Pina Filho et al. 2010; Ficht and Behnke 2021).

 The materials and manufacturing of these robots are also important. With common design

requirements such as high strength and low weight, metal alloys are commonly used.

These bipedal research platforms are highly unique and usually produced at low volume,

therefore, manufacturing methods such as computer numerical control (CNC) milling and

3D printing are also commonly utilised. Recent 3D printing developments have made it a

particularly well-suited manufacturing method for these highly specialised applications,

enabling high complexity with no extra cost, and reducing the start-up/tooling costs

Ryan Khoo Yeap Hong

16

characteristic of more traditional manufacturing methods. Components are also

increasingly being bought off-the-shelf to decrease costs, such as in the NimbRo-OP2X

robot, where off-the-shelf servos were utilised with 3D printing (pictured in Figure 5) to

achieve a low cost compared to the prohibitively high prices of most bipedal robot research

platforms (Ficht et al. 2018; Ficht and Behnke 2021).

Figure 5: Left) The NimbRo-OP2X robot, Right) Off-the-shelf servos in a 3D printed assembly make up the

robot’s hip joints (Ficht et al. 2018)

 Compliance in bipedal designs is becoming increasingly important as more research is

conducted. Components such as springs and pulleys decrease forces and torque spikes

on joints and store energy much like ligaments and tendons do in living organisms (Rajput

et al. 2021), they have been researched/implemented in projects such as in Badri-Spröwitz

et al. (2022), Maiorino and Muscolo (2020), Park et al. (2011) and Tsagarakis et al. (2017).

 Throughout the years, many control strategies have been developed. As mentioned

above, one of the oldest and most pervasive control theories in the field are models like

the spring-loaded inverted pendulum (SLIP) method based on the simplification of the

robot into a single inverted pendulum pivoting about a zero-moment-point (ZMP) or centre-

of-pressure (CoP), as used by Nguyen et al. (2020), Bae and Oh (2018), Chang et al.

(2020) and Lin et al. (2021). These control theories have also been improved and built

upon, such as adding a damping aspect or considering a double inverted pendulum as a

better approximation of a full humanoid configuration, but an issue remains; a complex

Ryan Khoo Yeap Hong

17

real-world robot cannot be reliably simplified into something as abstract and simplistic as

a pendulum about a perfect pivot point.

 This has been identified and calls for a different approach, a “model-free control design”

have been made (Hu and Smith 2000). While there have been a few approaches

developed based on this model free design, in this report, a novel fuzzy logic-based

approach was considered.

 Fuzzy logic allows the processing of data that would not otherwise be feasible with more

traditional control methods. It does this in a much more naturalistic way, mimicking human

cognition (Singh et al. 2013). The theory is based on relative membership functions, where

“crisp”, numerical inputs are “fuzzified” into fuzzy variables via set membership functions

and used in an intuitive inference system that manipulates the variables according to a set

of human-comprehensible rules. These fuzzy outputs are then “defuzzified” by output

membership functions and return a usable numerical output (Douglas 2021; Zadeh 1965),

further detailed in section 3.3 below.

 Humans are not the only bipedal organisms to inhabit the earth, more than then-thousand

species of bird, and by extension, another ten thousand of their extinct theropod ancestors

are bipedal (Brusatte, O’Connor, and Jarvis 2015; Lepora et al. 2016). The earliest signs

of bipedalism in mammals may be placed at 3.7 million years ago, with fossilised hominid

footprint patterns and fossils such as the A. afarensis “Lucy” strongly indicative of

mammalian bipedalism. (Finlayson 2005; Hunt 2015; Vaughan 2003). However, the fossil

record also contains specimens displaying bipedalism in birds, with fossils such as the

Archaeopteryx and various small bipedal theropods dated over 150-200 million years ago.

This 150-million-year evolutionary lead may very well have resulted in musculoskeletal

configurations better suited for bipedalism (Brusatte et al. 2015; Ksepka 2022; Lepora et

al. 2016).

 With this in mind, emphasis is placed on alternative, non-human gaits and designs. Birds

are incredibly varied and exhibit many different forms of bipedal movement such as

hopping, striding, running and skipping. However, the walking gait of a quail (Coturnix

Coturnix) is reviewed as quails tend to fly less and are more well-adapted for walking than

most birds (Abourachid et al. 2011), this can be seen in Figure 6.

Ryan Khoo Yeap Hong

18

Figure 6: A full gait cycle of a common quail, experimentally obtained by Abourachid et al. (2011) utilising

high-speed video fluoroscopic recordings

 From Figure 6, it can be seen that when analysed in the same way as a human gait cycle

(as in Figure 2), the gait patterns are near identical, with a stance phase difference of only

1% of a total cycle; a potential example of evolutionary convergence. The only remaining

difference is therefore the characteristic “crouched” build of birds resulting in a much lower

CoM and improved inherent stability over that of a walking human as concluded by Lepora

et al. (2016) and Andrada et al. (2014).

Ryan Khoo Yeap Hong

19

1.2. Project Aims and Objectives

 Against this background, the project aims to develop a walking robot designed around

human environments by utilising a quail-based bipedal configuration. A complex

engineering problem such as this comprises many facets. Therefore, the objective of the

project is to test and fulfil the following design specifications that the above aim may be

divided into:

• To build and manufacture a lightweight, robust bipedal robot whose design

balances biomimicry and practicality.

• To develop and code a reliable control system capable of generating dynamic,

adaptive footsteps to drive the servos on the robot and enable walking.

• To ensure a strong foundation is designed, both for the code and physical

components that allow for upgradability and future developments.

• To explore the use and implementation of a lightweight control theory approach

using fuzzy logic to replace traditional, more computationally expensive control

theories.

• To build the robot with components totalling under approximately £100.

Ryan Khoo Yeap Hong

20

2. Design and Building

2.1. Design Background

 Based on the literature above, an avian-inspired design was ultimately utilised based on

the measurements and configuration of a common quail (Coturnix Coturnix) recorded by

Lepora et al. (2016) and supplemented by Nyakatura et al. (2012). These measurements

informed the relative distances between joints and the overall configuration of components.

 This was implemented in the form of a central “spine” assembly, suspended between the

legs meant to represent the mass of all non-leg parts of the quail, it can be manipulated

via servos and houses the Arduino, Bluetooth communication module, ultrasonic sensor,

and batteries. This system, independent of the legs, aims to allow Pavo to balance and

counteract disturbances resulting from leg swings.

 To minimise costs, the minimum number of actuators required to realise an approximation

of the quail walking cycle (in Figure 6 above) is utilised. Two axes of movement are present

at the hip, one across the sagittal plane, and one across the frontal plane. The knee joint

is allowed to pivot in the sagittal plane and three servos were utilised to manipulate the

spine relative to the rest of the body, allowing it to pitch up and down, roll side to side, and

yaw left and right. This resulted in nine total DoFs, requiring nine servos. This configuration

can be seen in Figure 7 below. The servos utilised have relatively low torque outputs,

resulting in size and weight limitations further detailed in sections 2.3 and 4.2 below.

Ryan Khoo Yeap Hong

21

Figure 7: A DoF diagram illustrating the placements of the servos with a centre “spine” (in red) suspended

between the two legs. Lengths obtained by Lepora et al. (2016) and planes of movement possible for each

servo labelled

 This approximation of a quail’s skeletal configuration notably removes the active

actuation of the joint connecting the tibiotarsus and tarsometatarsus (the ankle joint). This

was replaced with a passive damped spring to reduce bounce during steps.

 Despite not being utilised for calculations/modelling, a representation of the equivalent

system during a single support phase can be seen in Figure 8 below to illustrate the

simplification utilised in more traditional control theories, a far cry from the complexity of

the system seen in Figure 7.

Figure 8: The simplified damped spring inverted pendulum model with pivot point and CoM labelled

102.5mm

129.5mm

87.5mm

Left Sagittal

Hip

Left Frontal

Hip

Left Sagittal

Knee

Right

Sagittal Hip

Right Frontal Hip

Right Sagittal

Knee

Spine Pitch

Spine Roll

Spine Yaw

Direction of fall

Ryan Khoo Yeap Hong

22

 As in the abstract, the robot has been named “Pavo”, a homage to the “Pavoninae”

subfamily of birds to which the quail belongs, and will be referred to as such for the

remainder of the report.

2.2. Hardware/Components

 Many off-the-shelf parts were utilised in the construction of Pavo as they lower costs and

reduce the time and work required to build the robot, these components are described

below (Carlos De Pina Filho et al. 2010; Ficht and Behnke 2021).

 Two processor solutions were considered (an Arduino-style microprocessor and a

Raspberry pi computer) as they were both adequately sized (seen in Figure 9) and deemed

capable of performing the tasks required. These were compared, and the Arduino UNO

was ultimately chosen for the following reasons:

 - Simpler to code and implement

 - Near-instant start-up and power down

 - Raspberry Pi computational power was deemed excessive for the use case

 - Arduinos are more power-efficient

 - Arduinos style boards are generally cheaper

Figure 9: a) An Arduino UNO, b) A Raspberry Pi (Carolo 2020)

 In addition to the Arduino UNO processor, various other notable components were

utilised in the construction of Pavo, such as Bluetooth modules to facilitate wireless

communication between the controller and the onboard Arduino to prevent a wire tether

from interfering with Pavo’s movements. These can be seen in Figure 10 below.

a) b)

Ryan Khoo Yeap Hong

23

Figure 10: a) Adafruit PCA9685 16-Channel Servo Driver (Earl 2012), b) Adafruit TDK InvenSense ICM-

20948 9-DoF IMU (Siepert 2020), c) SER0056 Servo, d) HC-SR04 ultrasonic distance sensor, e) Nintendo

“nunchuck” controller, f) Spring damper suspension, g) HC-05 Bluetooth serial transceiver module

 This resulted in Pavo costing just over £120. A detailed breakdown of cost, with

specifications and sources for each component, can be found in the appendix (A.2) along

with a full list of software utilised in the project (A.3).

2.3. Manufacture Details and Specifications

 With these components and design parameters in mind, the full robot was designed in

Autodesk Fusion 360 and tested with virtual joints to ensure components would not collide

during its operation. An engineering assembly drawing for Pavo can be found in the

appendix (A.9). The final design can be seen in Figure 11 below.

a) b) c)

d) e)

f)
g)

Ryan Khoo Yeap Hong

24

Figure 11: a) overall view of Pavo with the axis sign conventions utilised in the remaining report, b) Front

view of Pavo, c) Top view of Pavo, d) Side view of Pavo

 The robot was built around its components and was kept small to give the servos the best

possible chance of functioning well. This resulted in a scale of 2.5:1 relative to the quail

measurements utilised. Pavo is approximately 31cm tall, 21cm wide and 44cm long. The

final physical product can be seen in Figure 12.

X Y

Z

a) b)

c) d)

Ryan Khoo Yeap Hong

25

Figure 12: A side view of the finished robot

 It was decided early on in the design process that 3D printing would be the main mode

of manufacture, it was chosen for its relatively lower costs, quick turnaround, ability to

create high complexity parts, and lower weight materials (Polylactic Acid, PLA plastic was

utilised for its rigidity). These parts were fastened together with assorted nuts and bolts.

Two notable non-3D printed structures include the thighs and spine. The thighs were laser

cut from 3mm acrylic as they did not require the complex mounting points that other parts

required 3D printing to achieve. The spine is comprised of two 23cm long 5mm threaded

rods as these two sections were simple but load-bearing, likely requiring thick plastic that

would have dramatically increased weight.

 The components were assembled and electronics installed. A labelled circuit diagram of

the electronics onboard can be seen in Figure 13.

Ryan Khoo Yeap Hong

26

Figure 13: A labelled circuit diagram illustrating the connections between components onboard Pavo

 Notable design features and their motivations are as follows:

 Pavo’s “head” can be seen in Figure 14 below. It is mounted to the 5mm threaded rod

and is secured between two nuts. The head assembly is made of three 3D printed parts;

the front plate housing to mount and protect the ultrasonic sensor from damage, the top

rail to provide structural support to the assembly and provide guides for the wires, and the

main plate to house the Arduino and attach the assembly onto the threaded rod.

Figure 14: The “head” of Pavo

Slave Bluetooth

Module

AA Battery Pack

Ultrasonic

Sensor

Arduino UNO

9-DoF IMU

Servo Driver

Servos

Front plate

Top rail

Main plate

Ryan Khoo Yeap Hong

27

 The hip assembly, representing the pelvis of the quail, houses three servos, the servo

driver and the onboard IMU which are mounted securely to the 3D printed piece. As all the

servo wires are routed to this area, a hole and cavity were designed into the piece to both

save weight and provide an area for excess wires to be organised. A wire guide was also

installed at the top of the hip assembly to secure the central servo and provide a guide for

the wires from the three spine servos.

Figure 15: a) A top view of the hip, embedded IMU and servo driver b) A bottom view of the hip

 The “tail” (Figure 16), similar to the “head”, is attached to the 5mm threaded rod and

secured by two nuts. It was designed in a way that allows the tail to be adjusted up and

down the rod as required to keep the CoM of the spine assembly below the hip. The

tailpiece houses the battery pack and is secured onto the rod via a cable tie. A switch

controls the power to the Arduino and other electronic components. It can also be noted

that the electronic ground wire has been secured to the threaded rod itself, removing the

need for a dedicated grounding wire throughout the robot, similar to a car chassis.

Figure 16: The “tail” of Pavo, housing the batteries and a power switch, both labelled

b)

IMU
Servo

Driver

Cavity

Wire guide
a)

Battery Pack

Switch

Ryan Khoo Yeap Hong

28

 Pictured in Figure 17, the three servos suspending the spine can be seen along with the

piece that connects the two threaded rods at a 120° angle. It has been designed to allow

the passage of wires and be 3D printable while also being suitably robust as the two

weighted rods produce large leveraging forces on the piece.

Figure 17: The middle section of Pavo with the spine joint and servos labelled

 The implementation of the passive spring-damper can be seen in Figure 18, theoretically

allowing the foot to flex upon contact with the ground and reducing bounce.

Figure 18: The left foot assembly of Pavo with spring damper labelled

Roll Servo

Pitch Servo

Yaw Servo

Spine Joint

Spring Damper

Ryan Khoo Yeap Hong

29

 Finally, the feet can be seen in Figure 19, designed to mimic the foot of a bird, it has a

triangular footprint of 4cm by 7cm to allow Pavo to stand still without constant corrections.

Figure 19: The foot of Pavo with the distances between the three contact points marked

 A controller was also built to house the Arduino, Bluetooth module and batteries for the

wireless control of Pavo (Figure 20, an engineering assembly drawing may be found in the

appendix, A.9). A switch toggles power to the board and Light-emitting diodes (LEDs)

indicate power and controller inputs. Two spools have been designed into the side of the

controller to allow the wire of the controller to be neatly coiled when not in use. A circuit

diagram detailing the connections within the controller can be seen in Figure 21.

 The manufacture of Pavo involved the use of university workshops/facilities, safety

guidelines were adhered to at all times, further elaborated on in the risk assessments found

in the appendix (A.4).

4cm

7cm

Ryan Khoo Yeap Hong

30

Figure 20: The finished controller with remote

Figure 21: A labelled circuit diagram of the electronics in the controller

“Nunchuck”

Controller

AA Battery

Pack

Arduino UNO Multi-colour LED

Master Bluetooth

Module

Power LED

Breadboard only to illustrate

connections, not present in real system

Ryan Khoo Yeap Hong

31

3. Control Theory and Programming

3.1. General Approach and Overview

 Bipedal organisms found in nature exhibit incredibly complex and sophisticated

behaviours with respect to governing the appendages concerned with their bipedal motion.

They are able to take into account innumerable environmental variables and utilise them

to best traverse their terrain in a desired direction/fashion. These systems may be referred

to as central pattern generators (CPGs) (Ijspeert 2008).

 The objective of the control system is then to imitate a CPG found in nature that is capable

of accepting non-rhythmic, external data and produce an output in the form of rhythmic

coordinated footsteps that dynamically adapt and adjust based on those external sensory

inputs.

 A secondary but important goal is to ensure the system (and code) is structured in a

future-proofed manner that allows upgradability. It is for this reason that the code (available

in the appendix, A.8) is broken down into many individual functions that interact with each

other in a chain, each receiving data, processing/using it, and passing new data to the next

function. This individual code structure allows further complexity/sophistication to be

implemented in various aspects of the program without interfering with the functions of the

rest of the code. It is however not as efficient as a more cohesive system that works in

unison to produce the same effect faster and with fewer resources, this is further discussed

in section 4.3.3.

 In essence, the system designed is governed by two principal variables; modifier

variables “xMod” and “yMod”, both ranging from -100 to 100 that motivate movement

forwards/backwards and right/left respectively. These values are dynamically tuned to

allow Pavo to balance and walk.

 The system can be viewed in two parts: The first encapsulates all functions involved in

obtaining these two variables at any one point in time, derived from the external inputs (the

IMU data, obstacle sensing and controller input). The second involves the generation and

execution of a cyclic gait pattern based on these variables. A high-level overview of the

control system can be seen in Figure 22 below.

Ryan Khoo Yeap Hong

32

Figure 22: A high-level diagram illustrating the flow and functions of the control system designed

 At over 800 lines (including comments and spaces to enhance readability), the code has

been broken down into numbered sections for efficient navigation, it is punctuated by long

lines of easily identifiable numbers (see code in the appendix, A.8.2). This structure also

allows for all tuneable variables (such as gait speed and step size) to be placed at the top

of the code to allow for quick intuitive numerical adjustments in a “control panel” like

fashion.

3.2. Controller Code Theory/Bluetooth Communication

 Utilising the Bluetooth module specified in section 2.2, the modules were first configured

and paired as a “master” (the controller) and “slave” (onboard Pavo). Once paired, the

master circuit is able to send data wirelessly to the slave circuit.

 As the controller only sends simple directional information, a simple numbered command

was utilised to send data in lieu of a more traditional data packet approach. This was done

to reduce the code required on the onboard Arduino to save memory and processing

power.

 When input from the “nunchuck” controller is detected, the Bluetooth module transmits a

numerical variable containing the command and its magnitude. A table of the commands

implemented can be seen in Table 1 below.

Input Command

State

Sub-States

(magnitude)

Description

Ryan Khoo Yeap Hong

33

Joystick North 10 10-19 Walk forward

Joystick East 30 30-39 Stride right

Joystick South 50 50-59 Walk Backwards

Joystick West 70 70-79 Stride Left

C Button +
Joystick Pitch

110 110-119 Spine Pitch

C Button +
Joystick Roll

120 120-129 Spine roll

C Button +
Joystick East
and West

130 130-139 Spine Look Left and right

Table 1: A table illustrating the possible commands that are sent over Bluetooth

 For example, if the “nunchuck” controller sensed a maximum forward input, it would send

a command of 19 to Pavo. The first number “1” indicates a command to move forward,

and the second number “9” indicates that it should move forward at a maximum magnitude.

On-board, the slave module would receive the command, note that it is a number between

10 and 19, categorise it as a “move forward” command, subtract 10 to obtain the magnitude

of 9, and use this variable to obtain the direction modifiers (which are also based on IMU

and obstacle sensor data), further discussed in section 3.4.7.

 Many more command states are possible with the functionality of the “nunchuck”

controller and a more complete table of initially planned commands can be found in the

appendix (A.5).

 LEDs were also utilised to provide visual feedback to the operator, with a green led

indicating if the controller is turned on, and a multi-coloured LED turning green, red or

orange depending on the command sent, these two LEDs can be seen in Figure 21 above.

3.3. Fuzzy Logic

 Traditional methods of bipedal robot control require high volumes of complex dynamic

calculations that were deemed unfeasible due to the limited speed, memory, and

processing power of the Arduino UNO utilised in Pavo. As such, a fuzzy logic-based

approach was used to off-load the computational power required from the Arduino onto a

computer.

 Another reason that fuzzy logic was chosen over more traditional methods is the lack of

position feedback and complexity of Pavo, resulting in a mathematically ill-defined system.

Traditional methods require a complete simulation of the robot to predict its future states.

These methods require the simulated robot to be a highly accurate approximation of its

real-world counterpart, requiring weight, motor positions, etc. On top of that, environmental

data is also required, such as surface incline, uneven terrain information and surface

Ryan Khoo Yeap Hong

34

frictions. Therefore, generating a reliable and accurate model/representation of Pavo and

its immediate environment for use in a traditional control system was deemed impractical.

 Fuzzy logic-based systems, appropriately refined, are able to replace highly complex

mathematical systems and has been utilised in this context to replace the balancing

system required to prevent the bipedal robot from falling over.

 The Fuzzy Logic Toolbox (V2.8) by MATLAB was utilised in the building of the system as

it allows for smooth integration with the MATLAB coding environment required to produce

a dataset that can be integrated into Arduino code, further specified in section 3.4.3.

 The MATLAB toolbox allows both Sugeno and Mamdani style inference systems. The

latter was chosen for its simpler, more intuitive fuzzy inference system, where human

interpretable rules are used as opposed to Sugeno’s less readable but more

computationally efficient weighted average system. (Kaur and Kaur 2012).

 Based on the cart-pole problem by Douglas (2021), a fuzzy logic system mimicking the

natural response of accelerating in the direction of a fall was utilised to implement a

dynamic balancing system in Pavo. To do this, the IMU data, namely the angular position

and velocity were utilised as inputs to produce a directional output. Both values are first

mapped to an integer between -100 and 100 based on experimentally obtained expected

maximum/minimum values. This allows the fuzzy logic inputs to be adjusted in the code,

reducing the need to regenerate a lookup table in MATLAB for every minor iteration. This

was also done to avoid the use of decimals that take up much more memory than whole

numbers in the Arduino code.

 These normalised inputs are then fuzzified into two fuzzy sets each, representing the

degree of negative or positive angle/angular velocity as seen in Figures 23 and 24 below.

Figure 23: Membership functions of crisp angle input

Ryan Khoo Yeap Hong

35

Figure 24: Membership functions of crisp angular velocity input

 These four fuzzy variables are then processed with the following inference rules into four

new fuzzy output variables:

1. If (Angle is Negative) then (Speed_& Direction is Walk_Negative)

2. If (Angle is Positive) then (Speed_&_Direction is Walk_Positive)

3. If (Angular_Velocity is Positive) then (Speed_&_Direction is Run_Positive)

4. If (Angular_Velocity is Negative) then (Speed_&_Direction is Run_Negative)

 This is based on the natural reaction of walking in the direction of a fall to prevent it, with

the speed of movement dependent on the severity of the fall. These four outputs are then

utilised in the output membership function plot in Figure 25 and crisp numerical outputs

obtained via the centroid method.

Figure 25: Output membership function plots utilising four fuzzy output variables

An example of this can be seen in Figure 26.

Ryan Khoo Yeap Hong

36

Figure 26: An example of the fuzzy logic system in use with normalised inputs (Angle = 5, Angular velocity =

-24), and resulting normalised crisp output of -13.6

 All possible input combinations were calculated and a surface plot generated, as seen in

Figure 27 below.

Figure 27: The resulting fuzzy logic surface plot with crisp outputs on the vertical Z-axis and crisp inputs of

angle and angular velocity on the X and Y-axis

3.4. Code Details

3.4.1. Ultrasonic Sensor Implementation

 The HC-SR04 ultrasonic sensor measures distance by producing an ultrasonic chirp and

measuring the time taken for that chirp to be reflected. It calculates this via equation 1

(accounting for the distance travelled there and back by multiplying by 0.5):

 Distance (m) = Duration (s) * 340(m/s) * 0.5 Eq. (1)

 This was implemented without utilising a delay function that would interfere with the rest

of the code. A method utilising the “micros()” function was used to accomplish this and can

be seen in the code found in the appendix (A.8.2).

Ryan Khoo Yeap Hong

37

 This distance check is executed once every footstep cycle to reduce the computational

load required, this still amounts to multiple measurements a second which is adequate for

the prevention of collisions with objects.

3.4.2. IMU Implementation

 The IMU was utilised to obtain the angular position and angular velocity of Pavo’s hip

(where the IMU is embedded). The IMU provides raw data in the form of acceleration from

the accelerometer and angular velocity from its gyroscope. Both were combined to

produce the best possible approximation of its angular position.

 The accelerometer was first utilised to obtain the pitch and roll of the robot utilising

equations 2 and 3 below, calculating the resultant vector angle relative to gravity,

converting it into degrees and correcting an experimentally obtained error value:

𝑋𝐴𝑛𝑔𝑙𝑒 = (𝑎𝑡𝑎𝑛 (
𝑌

√𝑋2
) + 𝑍2) ×

180

𝜋
+ 𝑒𝑟𝑟𝑜𝑟 Eq. (2)

𝑌𝐴𝑛𝑔𝑙𝑒 = (𝑎𝑡𝑎𝑛 (
−𝑋

√𝑌2
) + 𝑍2) ×

180

𝜋
+ 𝑒𝑟𝑟𝑜𝑟 Eq. (3)

 The Gyro angular velocities are then manually integrated with equation 4 below to obtain

an alternative set of pitch and roll values.

𝑁𝑒𝑤 𝐺𝑦𝑟𝑜 𝑎𝑛𝑔𝑙𝑒 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐺𝑦𝑟𝑜 𝑎𝑛𝑔𝑙𝑒 + 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗

𝑇𝑖𝑚𝑒 𝑠𝑖𝑛𝑐𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑔𝑦𝑟𝑜 𝑎𝑛𝑔𝑙𝑒 Eq. (4)

 These two sets of angles derived from accelerometer data and gyro data were then

combined to obtain the best approximation of the angular positioning of Pavo.

 The angular velocity about the X and Y-axis is also utilised by the fuzzy logic system.

They are provided by the gyros with no extra calculations necessary.

3.4.3. Fuzzy Logic Implementation

 The pre-calculated fuzzy logic data of Figure 27 above is integrated into the Arduino code

by translating the surface into a 2-dimensional look-up table, similar to the work of Sobhan

et al. (2009), where inputs of angle and angular velocity as row and column indexes return

an appropriate directional output. This was accomplished with MATLAB code (see

appendix A.6). The surface was discretised into a 51 by 51 matrix array, allowing the

Arduino to store the table in its flash memory. The MATLAB code written allows for

adjusting the size of the matrix, with larger tables providing better accuracy from smaller

increments, allowing for future improvements should a processor with more memory be

utilised.

Ryan Khoo Yeap Hong

38

 The raw IMU data was smoothed with an exponential filter to reduce the noise from the

vibrations of the physical robot. This was employed utilising equation 5:

𝑥𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝑊 × 𝑥𝑁𝑒𝑤 + (1 − 𝑊) × 𝑥𝑂𝑙𝑑 Eq. (5)

 With 𝑊 being a tuneable weight factor to modify the nature of the filter, 𝑥𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 being the

filtered value, 𝑥𝑁𝑒𝑤 being the new input value and 𝑥𝑂𝑙𝑑 being the previous filtered value.

The results of the filter can be seen in Figures 28 and 29.

Figure 28: The raw roll value (blue) and the filtered, smoothed roll value (red)

Figure 29: The raw Y-axis gyro value (blue) and the filtered value (red), with the filter effectively extracting a

steady rhythm out of a noisy input resulting from the gait cycle of Pavo

3.4.4. Servo Set Structure

 Data for any given position is stored in an array of ten variables, with the first nine values

corresponding to each of the nine servos on board, and the tenth value utilised by the

“executePosition()” function to determine the number of transitionary states to generate

Ryan Khoo Yeap Hong

39

between the old and new position (detailed in section 3.4.8), an example of this structure

can be seen in Figure 30 below.

Figure 30: The structure of a position set utilised in the code, with nine servo values and a tenth “divisions”

value that determines the number of transitionary values to be generated

 These values correspond to the positioning of each servo and have been normalised to

a value between -100 and 100, representing a servo’s minimum and maximum values

respectively. This allows for a custom range of movement to be set for each servo to

prevent them from moving to positions beyond their range, damaging components and to

remove the need to recall the specific ranges and values of each servo.

 This system also utilises a pre-set neutral position value, corresponding to the normalised

“0” value. This allows Pavo to intuitively come to a neutral standing position when a set of

only zeros are written to the servos, it also allows a convenient way of adjusting the neutral

position of the servos with a single variable change. An example of this system is illustrated

in Figure 31 below.

Figure 31: Parallel number lines illustrating the mapping of true servo angles to their normalised values

utilised in the position sets with an example of a set value of 20 resulting in a servo angle of 139°

3.4.5. Cycle Stages

 From the quail walk cycle (Figure 6, section 1.1), a gait pattern was generated by

sectioning the gait cycle into eight distinct positions. With regards to a single leg, six

positions correspond to ground contact, and two represent the leg while airborne and in

the swing phase. Dividing a cycle into eight allows for the two legs to work in tandem (with

an offset of four stages) to reproduce the walking cycle of a quail, with both legs in contact

Ryan Khoo Yeap Hong

40

with the ground (double support) for a total of 25% of each cycle, a good approximation of

the experimentally obtained 26% by Abourachid et al. (2011). This is illustrated in table 2

below.

Table 2: A table showing the contact of each foot with the ground during the transitions between the eight

states, and the resulting single support (SS) or double support (DS) state of a stage, with ground contact

states indicated in grey

 These eight sets were then each broken into three different aspects, one “empty” set,

that represents a “running on the spot” movement, a “front/back” set, and a “left/right” set

that when combined with an empty set would produce footsteps enabling front/back and

left/right movement respectively.

 These sets are detailed in table 3, and the resulting cycle of all eight “empty” and

“front/back” sets can be seen in Figure 32.

Table 3: A table describing the three aspects of each of the eight stages, with “L” denoting the left leg and

“R” denoting the right leg, C1 represents the first contact of the foot with the ground, C2, the second, and so

on, until the leg is lifted during the swing phase, indicated by “air”

 Stage

1-2

Stage

2-3

Stage

3-4

Stage

4-5

Stage

5-6

Stage

6-7

Stage

7-8

Stage

8-1

Left Leg Grounded Grounded Grounded Air Air Air Grounded Grounded

Right Leg Air Air Grounded Grounded Grounded Grounded Grounded Air

Resulting
Support

SS SS DS SS SS SS DS SS

Footstep stage: % of cycle Empty set Front/back set Left/right set

1 12.5% Right leg up L C3, R air L C3, R air

2 12.5% Right leg up L C4, R air L C4, R air

3 12.5% Neutral L C5, R C1 L C5, R C1

4 12.5% Neutral L C6, R C2 L C6, R C2

5 12.5% Left leg up L air, R C3 L air, R C3

6 12.5% Left leg up L air, R C4 L air, R C4

7 12.5% Neutral L C1, R C5 L C1, R C5

8 12.5% Neutral L C2, R C6 L C2, R C6

Ryan Khoo Yeap Hong

41

Figure 32: The resulting step pattern of eight “empty” sets combined with their eight corresponding

“front/back” sets, with the ground contacts indicated by a red “X”

 These three sets can be combined with different weights to produce footsteps in any

front/back and left/right direction, determined by the “xMod” and “yMod”, detailed in section

3.4.7 below.

3.4.6. Cycle Stage Control

 An independent system is required to coordinate these stages and to ensure the correct

sequence of movements is executed. This is done by a cyclic global variable that denotes

the current stage of the gait pattern (1 to 8). Upon completion of a stage, this “cycle stage”

variable is incremented to the next, cycling through the stages. The code utilises this

variable to call upon the appropriate stored movement sets to produce the next movement

in the gait cycle.

 A 9th stage was also created to represent “at rest”. This is to allow Pavo to come to a

complete stop when the system is in balance. On start-up, Pavo remains in stage 9, and

will only break into the cyclic stages 1 to 8 if the “xMod” or “yMod” surpasses a certain pre-

set threshold, indicating a desire to begin movement. It is then possible for the system to

break out of the cyclic gait back to the “resting” stage if both direction modifiers fall below

Ryan Khoo Yeap Hong

42

the threshold at any time during the cycle (indicating a balanced state), preventing

unnecessary power consumption and component wear from “running on the spot”. This

cycle is illustrated in Figure 33.

Figure 33: A diagrammatic representation of the cyclic stage variable system

3.4.7. Direction Defining and New Position Generation

 To obtain the X-axis direction modifier “xMod”, the code first utilises the filtered angle and

angular velocity about the Y-axis to extract an appropriate direction value from the fuzzy

logic lookup table, it then takes into account the current command state from the controller

(if any) and adds that value to the modifier, finally, it checks if the ultrasonic sensor detects

an object closer than a predefined amount, and if it does, adds an appropriate negative

value to the modifier to encourage deceleration or acceleration backwards. This system

enables Pavo to avoid collisions without overwriting the fuzzy logic variables or operator

inputs, allowing all three to operate together.

 The Y-axis modifier “yMod” is similarly obtained by utilising the angular position and

velocity about the X-axis to obtain a fuzzy logic output from the same lookup table and is

modified based on input from the controller.

 These two values (both between -100 and 100), along with the current cycle stage

variable are used to extract the three appropriate sets for the current cycle stage and are

combined with weights based on the modifiers to generate the next position set in the

direction required. A graph illustrating examples of resulting directions and magnitudes

can be seen in Figure 34.

Ryan Khoo Yeap Hong

43

Figure 34: A graph illustrating various directions and magnitudes of movement derived from the X and Y

modifiers, with the vertical X-axis representing walking forward/back relative to Pavo (pictured from above)

3.4.8. Eased Position Transitions

 Once a new target position has been generated, Pavo’s components must move to the

new position in small increments to allow for speed control of the servos. This is done by

noting the new and current position of a servo and populating the space between them

with a number of transitionary positions based on the number of divisions required by the

new set (as in Figure 30).

 These transitionary states may be generated in three different styles as seen below in

Figure 35; One linear transition for normal operation, and two sinusoidal transitions, one

for beginning a movement from rest and the other slowing down the robot to a rest state.

X

Y

xMod = 100

yMod = 100

xMod = -100

yMod = 50

xMod = 20

yMod = -50

xMod = -80

yMod = -70

xMod = -30

yMod = 60

Ryan Khoo Yeap Hong

44

Figure 35: The three possible transitionary trends, a) Linear, b) Speeding up, c) Slowing down, with an x-axis

of time and y-axis of servo position, 0 representing the old state and 100 the new target state

 This is done by first producing an array of variables (on a scale of 0% to 100% as in

Figure 35) with the appropriate transition style and length (length determined by the tenth

“divisions” variable), then multiplying each element by the difference between the old and

new value of each servo.

 This multiplier array is produced in a “for loop” that loops according to the divisions

required and generates the values one at a time until the full array has been populated,

the equations 6 to 8 are utilised for each trend pattern.

Linear:

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 =
1

𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠
× 𝑖 Eq. (6)

Slow down to rest:

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 𝑠𝑖𝑛 (
𝜋/2

𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠
× 𝑖) Eq. (7)

Speed up from rest:

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 = 𝑐𝑜𝑠 ((
𝜋/2

𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛𝑠
× 𝑖) + 𝜋) Eq. (8)

 With 𝑖 being the cumulative times the loop has run.

 This transitionary array of servo positions is then placed into a “pending set container”

(described below in section 3.4.9), and the process repeated for all remaining servos.

a) b) c)

Ryan Khoo Yeap Hong

45

3.4.9. Pending Set Container and Periodic Position Execution

 As each of the servo transitionary arrays is calculated, they are placed in a 2-dimensional

array with ten columns to store the ten variables of a position set (see Figure 30), the

number of rows is based on a pre-set variable indicating the maximum transition states

allowed which may be increased with larger SRAMs (static random-access memory). This

“container” stores the queued position sets that need to be written to the servos and is

structured as in Figure 36 below.

Figure 36: Format of “pending sets” container array, with “x” denoting a servo position value

 Upon calculating a new transitionary array, the pending set is populated from the top

down (with reference to Figure 36) and “N” updated with the number of rows added, this

is the number of sets queued and available for execution.

 The code periodically checks the pending set container (determined by a pre-set time-

variable) for available sets to execute. If “N” is not 0, it will take the position set on the Nth

row and execute those positions. It will then reduce N by one to allow for the next set to

be executed on the next check. This repeats until N is 0 and Pavo has assumed the new

target position on the first row of the container. The container is then open to be overwritten

with the next set of transitionary position sets derived from a new target position and N

reset accordingly.

 All these systems work in unison to produce an upgradeable dynamic system that

receives non-rhythmic external data and produces an adaptive rhythmic gait cycle;

mimicking the central pattern generators found in nature. A more comprehensive version

of figure 22 illustrating how the above functions are linked and function together can be

seen in figure 37 below.

Ryan Khoo Yeap Hong

46

Figure 37 A control diagram detailing how all the individual functions detailed above in section 3 work

together to imitate a CPG

“empty” set

“left/right” set

“front/back” set xMod

yMod

New target position

Ryan Khoo Yeap Hong

47

4. Results and Discussion

4.1. Post-Assembly Adjustments

4.1.1. SRAM Limitations

 Upon the initial implementation of the code above, it was found that the SRAM of the

Arduino, where it stores variables, was overloaded. This resulted in the Arduino glitching

and failing to run the code. It was concluded that the large arrays, namely the 51 by 51

fuzzy logic lookup table, pending set container, and the eight cycle stage positions, each

broken into three sets ten variables long, were overutilizing the SRAM.

 An Arduino library was utilised to store these large amounts of data in the much larger

flash memory of the Arduino instead (via the PROGMEM function). This allows the SRAM

to only store the data that is immediately required by extracting the data from flash memory

into a buffer that can be overwritten once the data has been utilised (Andrews 2015).

 Prior to this fix, the flash memory was only at 56% of its maximum capacity and SRAM

was at its limit (72% of its maximum capacity to global variables, and the rest to local

variables), crashing the program. Once implemented, the flash memory usage increased

by only 6%, while the SRAM usage decreased by 29%, allowing the code to function as

originally intended.

4.1.2. Servo Torque Limitations

 Upon initial testing, it was found that the servos were vastly underpowered for the

intended movements, with the servos unable to perform large movements without skipping

steps and eventually failing due to the inherent moment applied to the knee motor due to

the configuration of the leg.

 A modification inspired by Badri-Spröwitz et al. (2022) was implemented to aid the knee

servos in carrying their loads. The “Birdbot” developed by Badri-Spröwitz et al. utilises an

avian-inspired leg clutching mechanism to achieve an energy-efficient gait, an important

aspect of this are springs and pulleys in the leg that accept and store energy upon contact

with the ground and re-release it when kicking off, imitating the ligaments and tendons

found in nature as mentioned in section 1.1 (Badri-Spröwitz et al. 2022).

 An analogous system was implemented by attaching a rubber band to the knee joints as

seen in Figure 37 below.

Ryan Khoo Yeap Hong

48

Figure 38: Two views of the added rubber bands (blue) attached to the knee to aid the servos, indicated by

red arrows

 A second rubber band was applied to the opposite side of the leg to counteract the flexing

of the acrylic thigh piece due to the initial rubber band.

 A diagram of the modification can be seen in Figure 38, where the tensioned band applies

a force “A” on the knee joint, resulting in moment “B” about the pivot point, counteracting

the inherent moment “C” resulting from its weight, reducing the resultant torque

requirement on the knee servo joints.

Figure 39: A force/moment diagram illustrating the rubber band modification (blue) counteracting weight

induced moments

A

B

C

Ryan Khoo Yeap Hong

49

 This modification decreased the torque requirements of the knee servos, enabling Pavo

to stand without issues and begin performing the movements detailed in section 4.2 below.

4.2. Results

 With Pavo successfully built and control theory coded and implemented, Pavo’s ability to

combine the appropriate sets and execute a gait cycle was tested, this can be seen in

video Figure 39 for walking forward (xMod = 100, yMod =0) and stepping right (xMod = 0,

yMod = 100).

Figure 40: [VIDEO] A demonstration of the cyclic footstep functionality with slowed down and exaggerated

movements for a) walking front and b) stepping right (full links can be found in the appendix (A.1) if

embedded links are not functioning)

 Pavo’s ability to respond to all three external stimuli was also tested successfully, with

video Figure 40 demonstrating Pavo’s ability to move in the direction of fall by utilising

the onboard fuzzy logic lookup table, video Figure 41 demonstrating its ability to sense

an obstacle and move backwards, and video Figure 42 demonstrating a successful

response to wireless external input from the controller. In all the aforementioned Figures,

the speed of the cycle has been reduced and movements exaggerated to allow the

observation of the distinct cycle stages.

a) b)

https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22
https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22
https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22
https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22
https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22
https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22
https://www.youtube.com/embed/ajH8I8Yix_Y?start=16&end=22

Ryan Khoo Yeap Hong

50

Figure 41: [VIDEO] A demonstration of Pavo’s ability to respond accordingly to angular position and come to

rest when rebalanced a) Tilting forwards and walking forward, b) Tilting backwards and walking backwards,

c) Tilting right and walking right, d) Tilting left and walking left

 Figure 42: [VIDEO] A demonstration of Pavo’s ability to respond to a sensed obstacle and begin a

backwards movement and stop when at a safe distance

a) b)

c) d)

<20cm

https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=61&end=84
https://www.youtube.com/embed/ajH8I8Yix_Y?start=61&end=84
https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=61&end=84

Ryan Khoo Yeap Hong

51

Figure 43: [VIDEO] A demonstration of Pavo’s ability to respond to controller input appropriately

 As mentioned above, the servos were unable to provide the adequate torque required to

mimic the walking of a quail as seen in Figure 6. As such, the angular ranges of movement

were tuned down to a point where the servos were able to execute the positions written to

them without skipping/failing.

 These smaller steps allowed Pavo to walk in a “shuffle”, moving across a surface in a

constantly stable way, maintaining double support throughout the majority of the gait cycle

instead of the planned 25%. This, unfortunately, prevented the fuzzy logic system from

seeing meaningful implementation in balancing Pavo and preventing falls, further

discussed in section 4.3.5.

 The average speed was then obtained by measuring the time taken for Pavo to traverse

a distance of 70cm, this can be seen in video Figure 43.

Figure 44: [VIDEO] A demonstration of Pavo walking 70cm

https://www.youtube.com/embed/ajH8I8Yix_Y?start=86&end=124
https://www.youtube.com/embed/ajH8I8Yix_Y?start=216&end=255
https://www.youtube.com/embed/ajH8I8Yix_Y?start=86&end=124
https://www.youtube.com/embed/ajH8I8Yix_Y?start=216&end=255

Ryan Khoo Yeap Hong

52

 This timed test was repeated a total of six times and durations averaged. The average

speed obtained was 29.371mm/s (individual test results can be found in the appendix,

A.7).

 The consistency of the gait cycle and its speed were also tested by overlaying the six

tests to observe the variations between them. This can be seen in video Figure 44.

Figure 45: [VIDEO] Six speed tests overlayed

 It can be seen that Pavo is fairly consistent in maintaining its speed, and saw a maximum

variance of 28.6% between its shortest and longest run. This test was repeated from a top-

down view to assess Pavo’s ability to maintain a straight course, as seen in video Figure

45.

Figure 46: [VIDEO] Five directional tests overlayed

https://www.youtube.com/embed/ajH8I8Yix_Y?start=126&end=159
https://www.youtube.com/embed/ajH8I8Yix_Y?start=161&end=210
https://www.youtube.com/embed/ajH8I8Yix_Y?start=126&end=159
https://www.youtube.com/embed/ajH8I8Yix_Y?start=161&end=210

Ryan Khoo Yeap Hong

53

 From Figure 45, It can be seen that Pavo is also fairly consistent in its direction, not

veering off by more than a few degrees over the course of the test, however, a tendency

to turn left was observed, this may be a result of an underpowered servo or a slight incline

of the surface. Directional consistency may be improved with the implementation of a

turning function and usage of data from the currently unutilised onboard magnetometer,

further discussed in section 4.3.6.

4.3. Issues, Improvements and Future Work

 Throughout the development and testing of the robot, many issues were identified. These

issues and their possible solutions/suggestions for future work are as follows.

4.3.1. Servo Torques and Power

 In its current state, one of the main imitations of Pavo is its servos. They are unable to

provide the torques required to enable the full implementation and exploration of the

control systems developed.

 A simple way to reduce the torques required is to reduce the size of the robot, reducing

moments of inertia and weight simultaneously. However, this reduces its effectiveness at

emulating a real-world implementation of the robot which would likely be larger instead of

smaller and does not address the issue directly.

 Utilising better actuators such as those used in the robots mentioned in section 1.1 would

improve Pavo’s ability to perform larger movements. This may, however, increase the cost

of the robot, this cost can be alleviated by only upgrading certain servos that require the

most torque/are currently the most likely to be overloaded (i.e., the knee and hip joints).

 Further research and implementation of compliance-based mechanisms to store energy

during the walking gait such as in section 4.1.2 and in work done by Badri-Spröwitz et al.

(2022) would further reduce actuator loads, it may also attenuate undesirable oscillations

and even decrease power draw.

 Finally, reducing the weights of various parts of the robot with better design would also

reduce the torques required to actuate components, methods of reducing weight are

elaborated on in section 4.3.2 below.

4.3.2. Improved Construction of the Robot

 The inability to actuate larger movements, resulting in the shuffling motion of Pavo may

also be attributed to the compliance/deformations while walking due to its construction,

Ryan Khoo Yeap Hong

54

with the entire construction bending to accommodate a new position with both legs still on

the ground instead of swinging one forward as intended.

 This may be improved by utilising more rigid materials and improving the design. Different

manufacturing methods such as metal CNC machining and direct metal laser sintering

(DMLS) may be utilised to realise this. Design methods such as generative design (GD)

or topology optimisation may also be utilised to reduce weight and increase rigidity such

as in Junk et al. (2018) or Rajput et al. (2021), where GD was utilised to redesign a

prosthetic leg as seen in Figure 46.

Figure 47: A generatively designed calf prosthetic, reducing material cost and weight while maintaining

required strength (Rajput et al. 2021)

 The joints connecting components may also be improved to reduce this unintentional

flexibility, for example, by replacing the current joints with better, more rigid ball bearing-

based joints.

 Power solutions such as lithium-ion batteries with better power-to-weight ratios may also

prove to be effective methods of decreasing overall weight.

 The spring damper integrated into Pavo’s legs could also be tuned to better attenuate

oscillations that interfere with IMU data. As it stands, the spring dampers are too stiff and

may be considered fully rigid, providing negligible damping effects.

4.3.3. Computing Power

 A limitation encountered throughout the development of Pavo was the limited

computational capacity of the Arduino UNO, with its computing speed, flash memory

capacity and static random-access memory (SRAM) capacity all bottlenecking the

implementation of the control system developed.

Ryan Khoo Yeap Hong

55

 One way of circumventing this issue is to improve/optimise the code to make it run more

efficiently and to utilise less memory and SRAM. With code of this complexity, there are

likely many avenues to explore to accomplish this such as reusing arrays and utilising

more efficient algorithms to calculate/generate data. As mentioned in section 3.1, the code

is currently structured in a compartmentalised fashion, with functions working

independently to use, process and execute data received from separate functions higher

in the chain. This is to facilitate the ease of improving and updating the code, however,

once developed to a satisfactory degree, the code may be rewritten to utilise the data in a

much more efficient and cohesive manner, removing the need for the “chain” of functions

that may slow the program down and limit the robots ability to function.

 This does not however remove the hard limitations such as the Arduino’s 32 Kilobyte

flash memory that limits the size (and therefore accuracy) of the fuzzy logic look-up table

and the 2 Kilobytes of SRAM that limit the number of transitionary sets that can be stored

(reducing movement smoothness). New hardware must be considered for this, boards

such as the more powerful Arduino DUE, with 512 Kilobyte flash memory and 96 Kilobyte

SRAM, or a Raspberry Pi as considered in section 2.2 could improve computing power

without sacrificing size, a size comparison of these solutions can be seen in Figure 47.

Figure 48: A size comparison of: a) Arduino DUE, b) The currently implemented Arduino UNO, c) Raspberry

Pi (Senese 2012)

 The computational capacity may also be improved by further offloading calculations to an

external board/computer, and sending/receiving the data wirelessly, further discussed in

section 4.3.4 below.

a) b) c)

Ryan Khoo Yeap Hong

56

4.3.4. Bluetooth Communication

 The current implementation of one-way Bluetooth communication stands to be greatly

improved. A proper Bluetooth data packet strategy may be implemented to facilitate bi-

directional data transfer at much higher speeds and volumes.

 This allows the sharing of processing power between the two Arduinos as opposed to the

current configuration where all calculations are performed on the onboard Arduino alone.

This may effectively double the memory and SRAM available if implemented properly,

without needing to upgrade hardware. For example, the robot could send obstacle data

and raw IMU data to the controller-side Arduino, and have it use that data to calculate the

next movement set required before sending that back to the robot to execute.

 This concept may be explored further by offloading computation onto more powerful

systems such as personal computers that do not have to be carried or powered by the

robot.

4.3.5. Fuzzy Logic

 As mentioned above, due to the limitations of the actuators utilised, the fuzzy logic system

planned could not be fully realised. While it has been successfully implemented and shown

to respond appropriately to external data, the reduced footstep ranges did not allow Pavo

to truly mimic the cyclic “falling and catching” of a natural quail gait cycle.

 Even with adequate servos, it is still expected that more testing and refining of the fuzzy

logic system is required before the robot is truly able to reliably mimic the gait cycle of a

quail. With weights and membership functions needing to be adjusted and different

approaches possibly explored, such as the fuzzy logic returning a directional acceleration

instead of a directional speed.

 Simulations of simplified models of the robot may also be performed to provide a better

starting point that may then be further refined in the physical model.

 The implemented fuzzy logic currently accepts two inputs and produces one output,

resulting in a 2-dimensional array look-up table, more inputs and outputs could also be

explored with improved hardware allowing the storing of larger, higher-dimensional arrays,

one example of an extra fuzzy logic input is described in section 4.3.6.

4.3.6. Environmental Data/Feedback

 For a robot to traverse an environment effectively, comprehensive environmental data is

needed, a logical improvement would therefore be increasing/improving the data that the

robot can gather from its environment, and how it reacts to it.

Ryan Khoo Yeap Hong

57

 Firstly, obstacles are currently avoided by simply adding a bias to move backwards upon

detection of an object, this may be improved by programming a system to allow the robot

to actively change its trajectory to avoid the object, it may also be possible to have the

robot stop and survey its surroundings before choosing the best path forward to avoid the

obstacle.

 Sensory components could also be added/upgraded, such as additional ultrasonic

sensors, camera systems, servo position/torque feedback, or extra IMUs, as described in

section 1.1 above. Location/heading data such as from the currently unused

magnetometer or a GPS may also improve directional consistency and allow the robot to

navigate to set locations/in set directions.

 This environmental data may then be utilised as additional inputs for the fuzzy logic

system and produce an improved directional output, such as in the work by Mishra et al.

(2022), where ultrasonic sensor data was utilised as fuzzy logic inputs for a robot to avoid

obstacles.

4.3.7. Gait/Walking Cycle

 Pavo is currently susceptible to inclined surfaces and requires a surface with an

appropriate friction to walk. These issues may be alleviated by improving aspects of the

gait cycles, along with the use of improved environmental data as described above.

 Firstly, more work could be done in programming the walk cycles based on the gait of the

quail, with a more faithful representation of its movements achievable. Conversely, as

Pavo is not an exact replica of a quail, work may also be done to optimise the cycle for the

built configuration instead, with improvements such as rhythmic rolling of the body to

counteract the sideways tilts caused by the leg swings.

 The movements are currently broken down into three sets (“empty”, “front/back” and

“left/right”) that are combined with different weights to produce a footstep, future work may

use this easily expandable framework to break down complex movements into further sub-

categories to further refine and improve the control of the CPG. For example, breaking

down the “empty” set into separate footstep and counterbalance movements, and having

the counterbalance movements be informed by IMU data to counteract more dynamic,

unexpected perturbances. Another example could be a new sub-set concerning rhythmic

asymmetrical body yaw, this may be adjusted to allow the robot to veer in a desired

direction while walking forwards or backwards.

Ryan Khoo Yeap Hong

58

5. Conclusion

 A literature review of bipedal robots was conducted, concluding that bird-based bipedal

robots present a promising new approach to the bipedal problem, resulting in lower CoMs

and better stability. It was also found that many control theories utilised in the control of

current bipedal robots are based upon oftentimes unrealistic simplifications/assumptions

and are computationally expensive.

 Consequently, a low-cost bipedal robot based on a quail was designed and built utilising

the minimum DoFs needed for bipedal movement and balance. A novel control theory

utilising fuzzy logic and based upon an experimentally obtained quail gait cycle was

developed, coded and implemented, with emphasis placed on upgradability to facilitate

future work.

 Issues throughout its development were identified and remedied where possible, chief

among these include:

• The servos being underpowered for the movements initially planned,

demonstrating the importance of compliant ligament-like components in bipeds.

This resulted in Pavo only being capable of taking small steps, preventing the fine-

tuning of the fuzzy logic system to operate as intended.

• The overly-compliant construction of Pavo preventing positions from being enacted

as initially planned.

• The Arduino UNO’s speed, SRAM and memory limitations reducing the speed and

smoothness of the footstep cycles, and also limiting the accuracy of the fuzzy logic

implementation.

 In conclusion, Pavo was able to walk without falling in a “shuffling” fashion at an average

speed of 29.371mm/s. Pavo was shown to successfully utilise non-rhythmic external data

to produce adaptive cyclic footstep patterns, autonomously responding to IMU data,

obstacle sensing, and operator inputs, indicative of a successful implementation of the

control theory developed.

Ryan Khoo Yeap Hong

59

References

Abourachid, Anick, Remi Hackert, Marc Herbin, Paul A. Libourel, François Lambert,

Henri Gioanni, Pauline Provini, Pierre Blazevic, and Vincent Hugel. 2011. “Bird

Terrestrial Locomotion as Revealed by 3D Kinematics.” Zoology 114(6):360–68. doi:

10.1016/J.ZOOL.2011.07.002.

Aithal, Chandana N., P. Ishwarya, S. Sneha, C. N. Yashvardhan, and K. v. Suresh. 2021.

“Design of a Bipedal Robot.” Lecture Notes in Electrical Engineering 752 LNEE:55–

67. doi: 10.1007/978-981-16-0443-0_5.

Andrada, Emanuel, Christian Rode, Yefta Sutedja, John A. Nyakatura, and Reinhard

Blickhan. 2014. “Trunk Orientation Causes Asymmetries in Leg Function in Small

Bird Terrestrial Locomotion.” Proceedings of the Royal Society B: Biological

Sciences 281(1797). doi: 10.1098/rspb.2014.1405.

Andrews, Christopher. 2015. “PGMWrap Library for AVR and Arduino Boards.” Retrieved

April 17, 2022 (https://github.com/Chris--A/PGMWrap).

Badri-Spröwitz, Alexander, Alborz Aghamaleki Sarvestani, Metin Sitti, and Monica A.

Daley. 2022. BirdBot Achieves Energy-Efficient Gait with Minimal Control Using

Avian-Inspired Leg Clutching. Vol. 7. doi: 10.1126/scirobotics.abg4055.

Bae, Hyoin, and Jun Ho Oh. 2018. “Biped Robot State Estimation Using Compliant

Inverted Pendulum Model.” Robotics and Autonomous Systems 108:38–50. doi:

10.1016/J.ROBOT.2018.06.004.

Bartoš, Michal, Vladimír Bulej, Martin Bohušík, Ján Stancek, Vitalii Ivanov, and Peter

Macek. 2021. “An Overview of Robot Applications in Automotive Industry.”

Transportation Research Procedia 55:837–44. doi: 10.1016/J.TRPRO.2021.07.052.

Bruemmer, David J., and Mark S. Swinson. 2003. “Humanoid Robots.” Encyclopedia of

Physical Science and Technology 401–25. doi: 10.1016/B0-12-227410-5/00317-3.

Brusatte, Stephen L., Jingmai K. O’Connor, and Erich D. Jarvis. 2015. “The Origin and

Diversification of Birds.” Current Biology 25(19):R888–98. doi:

10.1016/J.CUB.2015.08.003.

Carlos De Pina Filho, Armando, Aloísio Carlos De Pina, and Yuri dos Santos Mota.

2010. “RESEARCH ON BIPEDAL ROBOTS APLLIED TO SOCIETY.”

Carolo, Lucas. 2020. “Arduino vs Raspberry Pi: The Differences.” Retrieved April 17,

2022 (https://all3dp.com/2/arduino-vs-raspberry-pi/).

Ryan Khoo Yeap Hong

60

Chang, Lin, Songhao Piao, Xiaokun Leng, Zhicheng He, and Zheng Zhu. 2020. “Inverted

Pendulum Model for Turn-Planning for Biped Robot.” Physical Communication

42:101168. doi: 10.1016/J.PHYCOM.2020.101168.

Douglas, Brian. 2021. “Fuzzy Logic Part 3: Fuzzy Logic Examples.” Retrieved April 16,

2022 (https://uk.mathworks.com/videos/fuzzy-logic-part-3-design-and-applications-

of-a-fuzzy-logic-controller-1631704221859.html).

Earl, Bill. 2012. “Adafruit PCA9685 16-Channel Servo Driver.” Retrieved April 17, 2022

(https://learn.adafruit.com/16-channel-pwm-servo-driver/).

Ficht, Grzegorz, and Sven Behnke. 2021. “Bipedal Humanoid Hardware Design: A

Technology Review.” doi: 10.48550/arXiv.2103.04675.

Ficht, Grzegorz, Hafez Farazi, André Brandenburger, Diego Rodriguez, Dmytro

Pavlichenko, Philipp Allgeuer, Mojtaba Hosseini, and Sven Behnke. 2018. “NimbRo-

OP2X: Adult-Sized Open-Source 3D Printed Humanoid Robot; NimbRo-OP2X:

Adult-Sized Open-Source 3D Printed Humanoid Robot.” 2018 IEEE-RAS 18th

International Conference on Humanoid Robots (Humanoids). doi: 10.0/Linux-

x86_64.

Finlayson, Clive. 2005. “Biogeography and Evolution of the Genus Homo.” Trends in

Ecology & Evolution 20(8):457–63. doi: 10.1016/J.TREE.2005.05.019.

Grylls, Bethan. 2018. “Ocado’s Robot Swarm.” Retrieved April 24, 2022

(https://www.newelectronics.co.uk/content/news/ocado-s-robot-swarm).

Hu, Jianjuen J., and Arthur C. Smith. 2000. “Stable Locomotion Control of Bipedal

Walking Robots: Synchronization with Neural Oscillators and Switching Control.”

Hunt, Kevin D. 2015. “Bipedalism.” Basics in Human Evolution 103–12. doi:

10.1016/B978-0-12-802652-6.00008-6.

Ijspeert, Auke Jan. 2008. “Central Pattern Generators for Locomotion Control in Animals

and Robots: A Review.” Neural Networks 21(4):642–53. doi:

10.1016/J.NEUNET.2008.03.014.

Junk, Stefan, Benjamin Klerch, Lutz Nasdala, and Ulrich Hochberg. 2018. “Topology

Optimization for Additive Manufacturing Using a Component of a Humanoid Robot.”

Procedia CIRP 70:102–7. doi: 10.1016/J.PROCIR.2018.03.270.

Kaur, Arshdeep, and Amrit Kaur. 2012. “Comparison of Mamdani-Type and Sugeno-

Type Fuzzy Inference Systems for Air Conditioning System.” International Journal of

Soft Computing and Engineering (IJSCE) 2(2). doi: 10.35940/ijsce.

Ryan Khoo Yeap Hong

61

Ksepka, Daniel T. 2022. “Evolution of Birds.” Sturkie’s Avian Physiology 83–107. doi:

10.1016/B978-0-12-819770-7.00009-8.

Lepora, Nathan F., Anna Mura, Michael Mangan, Paul F. M. J. Verschure, Marc

Desmulliez, and Tony J. Prescott. 2016. “The Natural Bipeds, Birds and Humans:

An Inspiration for Bipedal Robots.” Lecture Notes in Computer Science (Including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) 9793:V–VIII. doi: 10.1007/978-3-319-42417-0.

Lin, Bintian, Qingwen Zhang, Feng Fan, and Shizhao Shen. 2021. “Reproducing Vertical

Human Walking Loads on Rigid Level Surfaces with a Damped Bipedal Inverted

Pendulum.” Structures 33:1789–1801. doi: 10.1016/J.ISTRUC.2021.05.048.

van der Linden, Marietta. 2011. “Gait Analysis, Normal and Pathological Function, 2nd

Ed. J. Perry, J.M. Burnfield, Slack Inc., 576 Pages, ISBN 978-1-55642r-R766-4.”

Physiotherapy 97(2):180. doi: 10.1016/J.PHYSIO.2010.05.007.

Liu, Chuan, and Ruiming Qian. 2019. “An Action Generator for Small Humanoid Robot

Based on Inverse Kinematics.” in The 4th International Conference on Control and

Robotics Engineering : ICCRE 2019 : April 20-23, 2019, Nanjing, China.

Liu, George H. Z., Michael Z. Q. Chen, and Yonghua Chen. 2019. “When Joggers Meet

Robots: The Past, Present, and Future of Research on Humanoid Robots.” Bio-

Design and Manufacturing 2(2):108–18. doi: 10.1007/s42242-019-00038-7.

Lohman, Everett B., Kanikkai Steni Balan Sackiriyas, and R. Wesley Swen. 2011. “A

Comparison of the Spatiotemporal Parameters, Kinematics, and Biomechanics

between Shod, Unshod, and Minimally Supported Running as Compared to

Walking.” Physical Therapy in Sport 12(4):151–63. doi:

10.1016/J.PTSP.2011.09.004.

Madison, Dave. 2021. “NintendoExtensionCtrl Arduino Library.” Retrieved April 15, 2022

(https://github.com/dmadison/NintendoExtensionCtrl).

Maiorino, Andrea, and Giovanni Gerardo Muscolo. 2020. “Biped Robots With Compliant

Joints for Walking and Running Performance Growing.” Frontiers in Mechanical

Engineering 6. doi: 10.3389/fmech.2020.00011.

McGhee, R. B. 1968. “Some Finite State Aspects of Legged Locomotion.” Mathematical

Biosciences 2(1–2):67–84. doi: 10.1016/0025-5564(68)90007-2.

Mishra, Krishna Anurag, Shivam Agarwalla, Daiwik Mishra, Anshuman Samal, Ashwani

Kumar, P. Chandrasekhar, Abhishek Sharma, and Anish Pandey. 2022. “Fuzzy

Ryan Khoo Yeap Hong

62

Logic Controlled Autonomous Quadruped Robot.” Materials Today: Proceedings.

doi: 10.1016/J.MATPR.2022.02.239.

Nguyen, Xuan Tien, Dang Hung Nguyen, Huy Hung Nguyen, Nhut Phuong Tong, Thanh

Phuong Nguyen, and Tan Tien Nguyen. 2020. “Balancing Walking Gait for Small

Size Humanoid Robot by Using Movable Mass.” International Conference on

Advanced Mechatronic Systems, ICAMechS 2020-December:13–16. doi:

10.1109/ICAMechS49982.2020.9310109.

Nyakatura, J. A., E. Andrada, N. Grimm, H. Weise, and M. S. Fischer. 2012. “Kinematics

and Center of Mass Mechanics During Terrestrial Locomotion in Northern Lapwings

(Vanellus Vanillas, Charadriiformes).” Journal of Experimental Zoology Part A:

Ecological Genetics and Physiology 317(9):580–94. doi: 10.1002/jez.1750.

Park, Hae Won, Koushil Sreenath, Jonathan W. Hurst, and Jessy W. Grizzle. 2011.

“Identification of a Bipedal Robot with a Compliant Drivetrain: Parameter Estimation

for Control Design.” IEEE Control Systems 31(2):63–88. doi:

10.1109/MCS.2010.939963.

Rajput, Srijan, Himanshu Burde, Udit Suraj Singh, Hridik Kajaria, and Ranjeet Kumar

Bhagchandani. 2021. “Optimization of Prosthetic Leg Using Generative Design and

Compliant Mechanism.” Materials Today: Proceedings 46:8708–15. doi:

10.1016/J.MATPR.2021.04.026.

Reher, Jacob, Wen-Loong Ma, and Aaron D. Ames. 2019. “Dynamic Walking with

Compliance on a Cassie Bipedal Robot.” doi: 10.48550/arXiv.1904.11104.

Reis, João, Nuno Melão, Juliana Salvadorinho, Bárbara Soares, and Ana Rosete. 2020.

“Service Robots in the Hospitality Industry: The Case of Henn-Na Hotel, Japan.”

Technology in Society 63:101423. doi: 10.1016/J.TECHSOC.2020.101423.

Senese, Mike. 2012. “ARDUINO UNO AND DUE SIZE COMPARISON (WITH

RASPBERRY PI AND FIO, TOO).” Retrieved April 19, 2022

(http://www.mikesenese.com/DOIT/2012/10/arduino-uno-and-due-size-comparison-

with-raspberry-pi-and-fio-too/).

Siepert, Bryan. 2020. “Adafruit TDK InvenSense ICM-20948 9-DoF IMU.” Retrieved April

17, 2022 (https://learn.adafruit.com/adafruit-tdk-invensense-icm-20948-9-dof-imu).

Singh, Harpreet, Madan M. Gupta, Thomas Meitzler, Zeng-Guang Hou, Kum Kuma

Garg, Ashu M. G. Solo, and Lotfi A. Zadeh. 2013. “Editorial Real-Life Applications of

Fuzzy Logic.” Advances in Fuzzy Systems 2013. doi: 10.1155/2013/581879.

Ryan Khoo Yeap Hong

63

Sobhan, P. V. S., G. v. Nagesh Kumar, M. Ramya Priya, and B. Venkateswara Rao.

2009. “Look up Table Based Fuzzy Logic Controller for Unmanned Autonomous

Underwater Vehicle.” ACT 2009 - International Conference on Advances in

Computing, Control and Telecommunication Technologies 497–501. doi:

10.1109/ACT.2009.128.

Takanishi, Atsuo. 2019. “Historical Perspective of Humanoid Robot Research in Asia.”

Humanoid Robotics: A Reference 35–52. doi: 10.1007/978-94-007-6046-2_145.

Tsagarakis, N. G., D. G. Caldwell, F. Negrello, W. Choi, L. Baccelliere, V. G. Loc, J.

Noorden, L. Muratore, A. Margan, A. Cardellino, L. Natale, E. Mingo Hoffman, H.

Dallali, N. Kashiri, J. Malzahn, J. Lee, P. Kryczka, D. Kanoulas, M. Garabini, M.

Catalano, M. Ferrati, V. Varricchio, L. Pallottino, C. Pavan, A. Bicchi, A. Settimi, A.

Rocchi, and A. Ajoudani. 2017. “WALK-MAN: A High-Performance Humanoid

Platform for Realistic Environments.” Journal of Field Robotics 34(7):1225–59. doi:

10.1002/rob.21702.

Vaughan, Christopher L. 2003. “Theories of Bipedal Walking: An Odyssey.” Journal of

Biomechanics 36(4):513–23. doi: 10.1016/S0021-9290(02)00419-0.

Warnakulasooriya, Sujan, Amin Bagheri, Nathan Sherburn, and Madhavan

Shanmugavel. 2012. “Bipedal Walking Robot - A Developmental Design.” Procedia

Engineering 41:1016–21. doi: 10.1016/j.proeng.2012.07.277.

Xie, Ye, Bin Lou, Anhuan Xie, and Dan Zhang. 2020. “A Review: Robust Locomotion for

Biped Humanoid Robots.” Journal of Physics: Conference Series 1487(1). doi:

10.1088/1742-6596/1487/1/012048.

Zadeh, L. A. 1965. “Fuzzy Sets.” Information and Control 8(3):338–53. doi:

10.1016/S0019-9958(65)90241-X.

Ryan Khoo Yeap Hong

64

Appendix

A.1 Video Figure Links
Figure 39: https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22

Figure 40: https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59

Figure 41: https://www.youtube.com/embed/ajH8I8Yix_Y?start=61&end=84

Figure 42: https://www.youtube.com/embed/ajH8I8Yix_Y?start=86&end=124

Figure 43: https://www.youtube.com/embed/ajH8I8Yix_Y?start=216&end=255

Figure 44: https://www.youtube.com/embed/ajH8I8Yix_Y?start=126&end=159

Figure 45: https://www.youtube.com/embed/ajH8I8Yix_Y?start=161&end=210

A.2 Parts list and Costing

Item Description/Specifications
Links Amo

unt Price

Arduino
Uno
equivalent
(Elegoo
Branded)

32Kb of flash memory, 2Kb of
SRAM, a clock speed of 16MHz, 14
digital IO pins, 6 analogue IO pins,
5V operation. 2

£
16.64

Adafruit 16-
Channel 12-
bit PWM
Servo Driver

Utilises I2C communication, taking
up only two pins on the Arduino,
drives and powers up to 16 servos
simultaneously. 1

£
13.00

ICM-20948
9-DoF
Inertial
measureme
nt unit

3 axes of accelerometer data,
gyroscopic data, and
magnetometer data. The IMU is
accurate to ±250 degrees per
second for the gyroscope, ±2g for
the accelerometer and ±4900μT for
the magnetometer.

1

£
13.00

HC-05
Bluetooth
module

Configured with one master and
one slave. 2

£
8.00

HC-SR04
Ultrasonic
Rangefinder

Capable of sensing objects within a
range of 2cm to 400cm, at an
accuracy of approximately 3mm. 1

£
2.00

Nintendo
“Nunchuck”

Capable of generating gyroscopic
pitch and roll outputs and outputs
from its 2-axis joystick and two
buttons, Interfaces via I2C 1

£
6.99

https://www.amazon.co.uk/gp/pro

duct/B01EWOE0UU/ref=ppx_yo_

dt_b_asin_title_o06_s00?ie=UTF

8&psc=1

https://thepihut.com/products/adaf

ruit-16-channel-12-bit-pwm-servo-

driver-i2c-interface-

pca9685?variant=27740507729&

currency=GBP&utm_medium=pro

duct_sync&utm_source=google&

utm_content=sag_organic&utm_c

ampaign=sag_organic

https://thepihut.com/products/adaf

ruit-tdk-invensense-icm-20948-9-

dof-imu-mpu-9250-

upgrade?ref=isp_rel_prd&isp_ref_

pos=3

https://thepihut.com/products/hc-

05-bluetooth-module

https://thepihut.com/products/ultra

sonic-distance-sensor-hcsr04

https://www.amazon.co.uk/gp/pro

duct/B01CJ9J7T4/ref=ppx_yo_dt_

b_asin_title_o04_s00?ie=UTF8&t

h=1

https://www.youtube.com/embed/ajH8I8Yix_Y?start=0&end=22
https://www.youtube.com/embed/ajH8I8Yix_Y?start=24&end=59
https://www.youtube.com/embed/ajH8I8Yix_Y?start=61&end=84
https://www.youtube.com/embed/ajH8I8Yix_Y?start=86&end=124
https://www.youtube.com/embed/ajH8I8Yix_Y?start=216&end=255
https://www.youtube.com/embed/ajH8I8Yix_Y?start=126&end=159
https://www.youtube.com/embed/ajH8I8Yix_Y?start=161&end=210
https://www.amazon.co.uk/gp/product/B01EWOE0UU/ref=ppx_yo_dt_b_asin_title_o06_s00?ie=UTF8&psc=1
https://www.amazon.co.uk/gp/product/B01EWOE0UU/ref=ppx_yo_dt_b_asin_title_o06_s00?ie=UTF8&psc=1
https://www.amazon.co.uk/gp/product/B01EWOE0UU/ref=ppx_yo_dt_b_asin_title_o06_s00?ie=UTF8&psc=1
https://www.amazon.co.uk/gp/product/B01EWOE0UU/ref=ppx_yo_dt_b_asin_title_o06_s00?ie=UTF8&psc=1
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729¤cy=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729¤cy=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729¤cy=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729¤cy=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729¤cy=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729¤cy=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729¤cy=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-16-channel-12-bit-pwm-servo-driver-i2c-interface-pca9685?variant=27740507729¤cy=GBP&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic
https://thepihut.com/products/adafruit-tdk-invensense-icm-20948-9-dof-imu-mpu-9250-upgrade?ref=isp_rel_prd&isp_ref_pos=3
https://thepihut.com/products/adafruit-tdk-invensense-icm-20948-9-dof-imu-mpu-9250-upgrade?ref=isp_rel_prd&isp_ref_pos=3
https://thepihut.com/products/adafruit-tdk-invensense-icm-20948-9-dof-imu-mpu-9250-upgrade?ref=isp_rel_prd&isp_ref_pos=3
https://thepihut.com/products/adafruit-tdk-invensense-icm-20948-9-dof-imu-mpu-9250-upgrade?ref=isp_rel_prd&isp_ref_pos=3
https://thepihut.com/products/adafruit-tdk-invensense-icm-20948-9-dof-imu-mpu-9250-upgrade?ref=isp_rel_prd&isp_ref_pos=3
https://thepihut.com/products/hc-05-bluetooth-module
https://thepihut.com/products/hc-05-bluetooth-module
https://thepihut.com/products/ultrasonic-distance-sensor-hcsr04
https://thepihut.com/products/ultrasonic-distance-sensor-hcsr04
https://www.amazon.co.uk/gp/product/B01CJ9J7T4/ref=ppx_yo_dt_b_asin_title_o04_s00?ie=UTF8&th=1
https://www.amazon.co.uk/gp/product/B01CJ9J7T4/ref=ppx_yo_dt_b_asin_title_o04_s00?ie=UTF8&th=1
https://www.amazon.co.uk/gp/product/B01CJ9J7T4/ref=ppx_yo_dt_b_asin_title_o04_s00?ie=UTF8&th=1
https://www.amazon.co.uk/gp/product/B01CJ9J7T4/ref=ppx_yo_dt_b_asin_title_o04_s00?ie=UTF8&th=1

Ryan Khoo Yeap Hong

65

Servos
SER0056

Capable of producing a maximum
continuous torque of 0.55 kgf·cm,
up to 300° of motion 9

£
41.49

AA Battery

Pack of 12, 1.5V, 3Ah Capacity,
with four batteries, supplies 6 volts
to the electronics 12

£
7.86

AA Battery
Holders Holds four AA Batteries 2

£
1.40

RC Damper
Suspension

Hobby radio-controlled car
suspension system. 1

£
10.01

STEMMA
QT
Proprietary
cable

To allow stronger, neater
connections to the IMU 1

£
0.80

Assorted
wires,
resistors,
etc. Provided by Electronics workshop

N/A

N/A N/A

3D
printed/lase
r cut parts Provided by Design Workshop

N/A

N/A N/A

Total

£
121.19

A.3 Software Utilised

Software: Utilised for:

Fusion 360 Design of Pavo
Solidworks Engineering drawings of Pavo

MATLAB Coding of fuzzy logic and code to generate Arduino compatible lookup table
Arduino IDE Code editor and compiler for Arduino UNO

Lightworks Video editor utilised for video Figures
Draw.io To produce diagrams/charts
Fritzing To produce circuit diagrams

Cura To slice 3D files for 3D printing
PrusaSlicer To analyse and verify parts before sending to 3D print

https://www.mouser.co.uk/Product

Detail/DFRobot/SER0056?qs=sG

AEpiMZZMv0NwlthflBiyy1cZtCJti

Ge7ORwfYwunA%3D

https://uk.rs-online.com/web/p/aa-

batteries/1974299

https://uk.rs-

online.com/web/p/battery-

holders/6119605

https://www.amazon.co.uk/gp/pro

duct/B00RF2W5OA/ref=ppx_yo_d

t_b_asin_title_o05_s00?ie=UTF8

&psc=1

https://thepihut.com/products/ste

mma-qt-qwiic-jst-sh-4-pin-cable-

100mm-long

https://www.mouser.co.uk/ProductDetail/DFRobot/SER0056?qs=sGAEpiMZZMv0NwlthflBiyy1cZtCJtiGe7ORwfYwunA%3D
https://www.mouser.co.uk/ProductDetail/DFRobot/SER0056?qs=sGAEpiMZZMv0NwlthflBiyy1cZtCJtiGe7ORwfYwunA%3D
https://www.mouser.co.uk/ProductDetail/DFRobot/SER0056?qs=sGAEpiMZZMv0NwlthflBiyy1cZtCJtiGe7ORwfYwunA%3D
https://www.mouser.co.uk/ProductDetail/DFRobot/SER0056?qs=sGAEpiMZZMv0NwlthflBiyy1cZtCJtiGe7ORwfYwunA%3D
https://uk.rs-online.com/web/p/aa-batteries/1974299
https://uk.rs-online.com/web/p/aa-batteries/1974299
https://uk.rs-online.com/web/p/battery-holders/6119605
https://uk.rs-online.com/web/p/battery-holders/6119605
https://uk.rs-online.com/web/p/battery-holders/6119605
https://www.amazon.co.uk/gp/product/B00RF2W5OA/ref=ppx_yo_dt_b_asin_title_o05_s00?ie=UTF8&psc=1
https://www.amazon.co.uk/gp/product/B00RF2W5OA/ref=ppx_yo_dt_b_asin_title_o05_s00?ie=UTF8&psc=1
https://www.amazon.co.uk/gp/product/B00RF2W5OA/ref=ppx_yo_dt_b_asin_title_o05_s00?ie=UTF8&psc=1
https://www.amazon.co.uk/gp/product/B00RF2W5OA/ref=ppx_yo_dt_b_asin_title_o05_s00?ie=UTF8&psc=1
https://thepihut.com/products/stemma-qt-qwiic-jst-sh-4-pin-cable-100mm-long
https://thepihut.com/products/stemma-qt-qwiic-jst-sh-4-pin-cable-100mm-long
https://thepihut.com/products/stemma-qt-qwiic-jst-sh-4-pin-cable-100mm-long

Ryan Khoo Yeap Hong

66

A.4 Risk Assessment

 Due to the highly practical and hands-on nature of this project, where many

manufacturing facilities and workshops were required to be utilised to realise the final

tangible product, training was undergone prior to using their respective facilities to

ensure a high standard of health and safety was upheld at all times.

 An induction was held for the design workshop, wherein appropriate precautions were

underlined before using the Pillar drill and bandsaw, and various other tools and

equipment on site.

 An induction was held for the electronics workshop, where a guided tutorial on soldering

was performed, ensuring good practices and safety precautions were followed. An

introduction to the use of an oscilloscope and signal generators was also performed,

although not utilised in this project.

 An induction was also performed to learn how to operate the self-service 3D printers in

the design workshop, although this was also not utilised for the project.

 Prior to utilising any of the aforementioned facilities for the project, appropriate method

statements and risk assessments were undertaken and approved before use to ensure

the safety of the individual utilising the equipment and also personnel around and in the

vicinity. This results in proper assessment of possible hazards in these environments,

such as hot soldering irons causing fires, laser cutters causing blindness or hazardous

fumes, reckless band saw usage causing injury, etc. These forms can be found below.

Ryan Khoo Yeap Hong

67

A.4.1 Risk Assessment Forms

 A.4.1.1 Design workshop Method Statement

Faculty of Engineering and the
Environment

Method Statement

Title

Design workshop activities for the building of a Bipedal Robot.

Location of Activity
 Tizard Building 13, Room 1055

Date

8/3/2022
Assessor
 Ryan Khoo Yeap Hong
ryhk1a18 30480183

Contact Details
 ryhk1a18@soton.ac.uk
 +44 0749 376 4830

Supervisor
Dr Suleiman Sharkh

Contact Details
 S.M.Sharkh@soton.ac.uk

Introduction / Overview.
 Background description to the project. What will you achieve? How will you do this? Why is
this required?

 A Bipedal robot is to be built, to do so, various workshop work will be done to enable
the completion of the robot. This will be done in the Design workshop by utilising its
tools and resources to: Laser cut acrylic/ply-wood pieces, assemble and modify them.
Plastic 3D-printed parts may also be assembled and modified. This may involve simple
drilling, sanding, cutting and deburring activities.

Description of Task and how it will be carried out.
 Including any diagrams, materials, samples and equipment to be used as applicable.

 The main activity that will be carried out will be laser cutting parts and assembling
them. This will involve placing material into the laser cutters in the workshop and
operating them safely. Besides this, parts will also be assembled, with slight
modifications possibly required, using the various tool available in the workshop, such
as drilling, cutting and sawing.

Control Measures including training, PPE
 Identify significant hazards and actions/control measures to be taken.
Hazards present include machinery used, Pillar drills, band saws and laser cutters,
among other assorted tools. These pose a threat to safety if handled carelessly or
misused, for example, potentially serious cuts from band saws, or blindness from stray
lasers. Covered shoes are worn at all times to protect from falling items, and safety
glasses will be utilised while laser cutters are in operation.
 An official induction for the workshop was also attended to ensure adequate
knowledge of how to utilise the various tools and equipment available prior to
unsupervised activity.

Emergency Arrangements

 -
Additional persons involved in activity

 -

Ryan Khoo Yeap Hong

68

 A.4.1.2 Design workshop Risk Assessment

Ryan Khoo Yeap Hong

69

Ryan Khoo Yeap Hong

70

Ryan Khoo Yeap Hong

71

A.4.1.3 Electronics workshop Method Statement

Faculty of Engineering and the
Environment

Method Statement

Title

Electronics work for the building of a Bipedal Robot.

Location of Activity
 Tizard Building 13, Room 3027

Date

1/2/2022
Assessor
 Ryan Khoo Yeap Hong
ryhk1a18 30480183

Contact Details
 ryhk1a18@soton.ac.uk
 +44 0749 376 4830

Supervisor
Dr Suleiman Sharkh

Contact Details
 S.M.Sharkh@soton.ac.uk

Introduction / Overview.
 Background description to the project. What will you achieve? How will you do this? Why is
this required?

 A Bipedal robot is to be built, to do so, various electronic work will be done to enable
the completion of the robot. This will be done in the Electronics workshop by utilising
its tools and resources to: cut and strip wires, solder wires together, apply heat shrink
to protect the wires. Plastic 3D-printed parts may also be assembled and modified, this
may involve simple drilling, sanding, cutting and deburring.

Description of Task and how it will be carried out.
 Including any diagrams, materials, samples and equipment to be used as applicable.

 The main activity that will be carried out is splicing wires. This involves cutting the
wires, stripping the insulation, twisting them together, soldering them together, and
shrink wrapping a sleeve over the joint with a heat gun.

Control Measures including training, PPE
 Identify significant hazards and actions/control measures to be taken.
Hazards present are soldering irons and heat guns, these tools will not be left turned
on and unattended. They will also be stored properly when not in use (heat gun turned
off, and soldering iron placed into its holder and no where else)
 An official induction for the workshop was also attended to ensure adequate
knowledge of how to utilise the various tools and equipment available.

Emergency Arrangements

 -
Additional persons involved in activity

 -

Ryan Khoo Yeap Hong

72

A.4.1.4 Electronics workshop Risk Assessment

Ryan Khoo Yeap Hong

73

Ryan Khoo Yeap Hong

74

A.5 Full Controller State Commands
State State

Number
Sub-States
(magnitude)

Description

Joy N 10 10-19 Walk forward

Joy NE 20 20-29 Turn Right

Joy E 30 30-39 Stride right

Joy SE 40 40-49

Joy S 50 50-59 Walk Backwards

Joy SW 60 60-69

Joy W 70 70-79 Stride Left

Joy NW 80 80-89 Turn Left

Z button 90 -

C Button 100 -

C + Joy Pitch 110 110-119 Manual Spine Pitch Joy +-30
degrees

C + Joy Roll 120 120-129 Manual Spine roll Joy +-45
degrees

C+ Joy Left and
right

130 130-139 Manual Spine Look Left and right

Ryan Khoo Yeap Hong

75

A.6 MATLAB Code

fuzzyLogicFile = Direction_Control ; %name of fuzzy logic file to be

utilised for output

outputSize = 51; %Size of output array, Fuzzy Logic surface will scale

accordingly

%output size should be an odd number to allow a middle number

arraySize = outputSize -1;

increment = 200/arraySize;

fileID = fopen('Fuzzy Logic Lookup Table Output.txt','w');

fprintf(fileID, "const int16_p PROGMEM fuzzTable [%.0f][%.0f] = { \n

",arraySize+1,arraySize+1);

for y = -100:increment:100

%print a row of variables

fprintf(fileID, "{");

for x = -100:increment:100

 fprintf(fileID, "%.0f", evalfis(fuzzyLogicFile,[x y])); %Round

number to closest whole number

 if x < 100

 fprintf(fileID, ", ");

 end

end

 fprintf(fileID, "}, \n ");

end

fprintf(fileID, "}; \n");

buffer = extractFileText("Fuzzy Logic Lookup Table Output.txt");

disp(buffer);

fprintf("Center index: %f \n", arraySize/2);

A.7 Speed Test data
Speed tests Time taken to travel 700mm (s) Speed (mm/s)

Test 1 24 29.167

Test 2 21 33.333

Test 3 27 25.926

Test 4 22 31.818

Test 5 24 29.167

Test 6 25 28.000

Averaged 23.833 29.371

Ryan Khoo Yeap Hong

76

A.8 Arduino Code:

 An Arduino library by (Madison 2021) was utilised to streamline the communication with

the Nintendo “nunchuck” controller via an I2C interface.

[Accessed 29/4/2022] Available at: https://github.com/dmadison/NintendoExtensionCtrl

 The in-built Arduino wire library was used to enable communication with “I2C” (Inter-

Integrated Circuit) devices.

 [Accessed 29/4/2022] Available at: https://www.arduino.cc/en/reference/wire

 A library by Adafruit was utilised to interface with the servo driver.

 [Accessed 29/4/2022] Available at: https://github.com/adafruit/Adafruit-PWM-Servo-

Driver-Library

 A library by Megunolink was utilised to simplify the implementation of the exponential

filter.

[Accessed 29/4/2022] Available at: https://www.megunolink.com/documentation/arduino-

library/

 A library by Adafruit was utilised to interface with the IMU.

[Accessed 29/4/2022] Available at: https://github.com/adafruit/Adafruit_ICM20X

 A library was utilised to streamline the implementation of storing and retrieving data

from the program flash memory to free up SRAM.

 [Accessed 29/4/2022] Available at: https://github.com/Chris--A/PGMWrap

A.8.1 Controller Code

//Ryan Khoo 2022, Bipedal Robot Controller Code

#include <NintendoExtensionCtrl.h>
Nunchuk nchuk;

int green = 8; //Red LED pin (0 for ON)
int red = 7; //Orange LED pin

void setup() {
 Serial.begin(9600);
 nchuk.begin();
 nchuk.connect();

 pinMode(red, OUTPUT);

https://github.com/dmadison/NintendoExtensionCtrl
https://www.arduino.cc/en/reference/wire
https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library
https://github.com/adafruit/Adafruit-PWM-Servo-Driver-Library
https://www.megunolink.com/documentation/arduino-library/
https://www.megunolink.com/documentation/arduino-library/
https://github.com/adafruit/Adafruit_ICM20X
https://github.com/Chris--A/PGMWrap

Ryan Khoo Yeap Hong

77

 pinMode(green, OUTPUT);
 digitalWrite(green, 1);//green light starts off
 digitalWrite(red, 1);//red light starts off
}

void loop() {

 nchuk.update();
 //Obtain Current State of remote
 int Cbutton = nchuk.buttonC();
 int Zbutton = nchuk.buttonZ();
 int Xvalue = nchuk.joyX();//0-255, middle at 129
 int Yvalue = nchuk.joyY();//middle at 126
 int Roll = nchuk.rollAngle();
 int Pitch = nchuk.pitchAngle();
 //Serial.print("Yvalue:");Serial.println(Yvalue);

 //Manual Look control red light mode
 if (Cbutton == 1){
 digitalWrite(red, 0); //red light on
 //Manual Pitch
 int pitchCommand = map(Pitch,-30,30,110,119);
 if (pitchCommand >=110 && pitchCommand <= 119){
 Serial.write(pitchCommand);//---
Command Send
 }
 //Manual Roll
 int rollCommand = map(Roll,-45,45,120,129);
 if (rollCommand >=120 && rollCommand <= 129){
 Serial.write(rollCommand);//---
Command Send
 }
 //Manual Look left and right
 int lookCommand = map(Xvalue,0,253,130,139);
 if (lookCommand >=130 && lookCommand <= 139){
 Serial.write(lookCommand);//---
Command Send
 }
 }

 //normal joy operation

 //green light when joy moved
 if(((Xvalue > 130 or Xvalue < 127)or((Yvalue > 127 or Yvalue < 125))) &&
Cbutton==0 && Zbutton ==0){
 digitalWrite(green, 0);//green light on

 //Forward
 int forwardCommand = map(Yvalue,129,255,10,19);
 if (forwardCommand >12 && forwardCommand <= 19){
 Serial.write(forwardCommand);//---
--Command Send
 //Serial.println(forwardCommand);

 }
 //Back
 int backCommand = map(Yvalue,0,126,59,50);
 if (backCommand >52 && backCommand <= 59){

Ryan Khoo Yeap Hong

78

 Serial.write(backCommand);//---
Command Send
 //Serial.println(backCommand);

 }
 //Right
 int rightCommand = map(Xvalue,126,254,30,39);
 if (rightCommand >32 && rightCommand <= 39){
 Serial.write(rightCommand);//---
Command Send
 //Serial.println(rightCommand);

 }

 //Left
 int leftCommand = map(Xvalue,0,125,79,70);
 if (leftCommand >72 && leftCommand <= 79){
 Serial.write(leftCommand);//---
Command Send
 //Serial.println(leftCommand);

 }
 delay(100);

 }

 //temp z button activation
 if (Zbutton == 1){
 digitalWrite(green, 0);//yellow light on
 digitalWrite(red, 0);
 }

 //Yellow for Z button and green for normal moving operation

//Turn off lights if nothing pressed
 if (Yvalue==126 && (Xvalue==129 or Xvalue==128) && Zbutton==0 && Cbutton ==
0){
 digitalWrite(green, 1);//green light off
 digitalWrite(red, 1);//red light off
 }
 delay(30); //delay to avoid overloading bluetooth bus
}

Ryan Khoo Yeap Hong

79

A.8.2 Robot Code

// Ryan Khoo Yeap Hong | 30480183 | Year 3 Individual Project |
Academic year 2021/2022 | ryankhoo@ymail.com | ryhk1a18@soton.ac.uk
#include <Wire.h>
Adafruit_PWMServoDriver pwm = Adafruit_PWMServoDriver();
#include <Adafruit_ICM20948.h>
Adafruit_ICM20948 icm;
Adafruit_Sensor *icm_gyro, *icm_mag, *icm_accel;
#include <PGMWrap.h>
#include "Filter.h"

//Changeable Parameters
000
000
00

//Walking pattern progress tracked by:
int cycleStage ;
int mode = 9; //<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--
<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<--<-
-
// 0 to disable all cycles (for debugging)
// 9 to begin in dynamic neutral
// 1 for normal operation
// 10 to enable servo initialisations
// 20 for neutral position
// 30 for custom test position

//Servo execution speed (in miliseconds between each state execution,
smaller number = faster execution)
int setDelayX = 2; //Default = 2, the time between each "eating" of a
pending set, minimum depends on how fast void loop can execute
int setDelay = 2;// Code usues this variable, but "X" version is to
allow initialisation to go slower before main loop

//Delay between IMU measurements
int IMUDelay = 20;

// footstep set modifiers
int emptyMod = 40; // Default = 40, 0 to 100, adjusts height of empty
step, mostly unchanged.
int xMod = 0; //-100 to 100, degree of forward stepping 100 = front
full, set by code
int yMod = 0; //-100 to 100, degree of side stepping 100 = right full,
set by code

const int gaitAngle = 10; // Default = 20, the angle that the legs will
swing forward and back, smaller angles require less torque, 50 for demo
const int gaitSideAngle = -10; // Default = 20, the angle that the legs
will Left and Right, smaller angles require less torque, 50 for demo

//max divisions possible, may need to be reduce depending on memory
use, the higher the better/smoother.
const int maxDivisions = 10;

Ryan Khoo Yeap Hong

80

//when both X and Y modifiers are below stillThreshold, robot will
stand still
int stillThreshold = 20;

//Modifier Weightages (100 = 1)
int fuzzWeight = 100;
int controllerWeight = 100;

//Filter Weights
ExponentialFilter<float > filteredRoll(5, 0);
ExponentialFilter<float> filteredPitch(5, 0);
ExponentialFilter<float > filteredAngVelX(5, 0);
ExponentialFilter<float > filteredAngVelY(8, 0);

//000
000
00
//111
111
111
//Movement sets
//Time Variable may be added in the tenth slot [9], values are in
divisions. i.e. a value of 10 would mean 10 divisions between the
previous state and the new input set,
//more divisions = slower, time to assume new state in microseconds: t
= divisions * setDelay

//Initialisation sets ---

const int16_p PROGMEM startServoState[] = {0,0,0,0,0,0,0,0,0,1}; //
Intant recenter, To neutral position at max speed CURRENTLY UNUSED
const int16_p PROGMEM neutralServoState[] = {0,0,0,0,0,0,0,0,0,10};//
Servos centered, with last variable the time variable
const int16_p PROGMEM maxServoState[] =
{100,60,100,100,60,100,0,0,0,10};// Servos at full maximums
const int16_p PROGMEM minServoState[] = {-100,-100,-50,-100,-100,-
50,0,0,0,10};// Servos at full miniimums
//Test Leg state
const int16_p PROGMEM testServoState[] = {0,0,100,0,0,100,0,0,0,6};//
ONLY for testing

//Empty walking sets, defines time variable, other sets time value = 0

// int emptyMod = 100 This is above in changable states, adjusts height
of step
//Only empty sets have a time value to differentiate durations of
various stages
// L L L R R R M
M M t
const int16_p PROGMEM empty1ServoState[] = {0, 0, 0, -50, -40, 0, -
20, 0, 20, 4}; // retracted right leg
const int16_p PROGMEM empty2ServoState[] = {0, 0, 0, -50, -40, 0, -
10, 0, 20, 4};

Ryan Khoo Yeap Hong

81

const int16_p PROGMEM empty3ServoState[] = {0, 0, 0, 0, 0, 0,
0, 0, 0, 6};
const int16_p PROGMEM empty4ServoState[] = {0, 0, 0, 0, 0, 0,
0, 0, 0, 6};
const int16_p PROGMEM empty5ServoState[] = {-50,-40, 0, 0, 0, 0,
20, 0, -20, 4}; //retracted left leg
const int16_p PROGMEM empty6ServoState[] = {-50,-40, 0, 0, 0, 0,
10, 0, -20, 4};
const int16_p PROGMEM empty7ServoState[] = {0, 0, 0, 0, 0, 0,
0, 0, 0, 6};
const int16_p PROGMEM empty8ServoState[] = {0, 0, 0, 0, 0, 0,
0, 0, 0, 6};
//Front-back walking sets ---

const int GD = gaitAngle/10; //GD = Gait division
const int16_p PROGMEM x1ServoState[] = {0,GD*-1,0,0,GD*5,0,0,0,0,0};
const int16_p PROGMEM x2ServoState[] = {0, GD*1,0,0,GD*-5,0,60,0,0,0};
const int16_p PROGMEM x3ServoState[] = {0, GD*3,0,0,GD*-5,0,30,0,0,0};
const int16_p PROGMEM x4ServoState[] = {0, GD*5,0,0,GD*-3,0,0,0,0,0};
const int16_p PROGMEM x5ServoState[] = {0, GD*5,0,0,GD*-1,0,0,0,0,0};
const int16_p PROGMEM x6ServoState[] = {0,GD*-5,0,0,GD*1,0,-60,0,0,0};
const int16_p PROGMEM x7ServoState[] = {0,GD*-5,0,0,GD*3,0,-30,0,0,0};
const int16_p PROGMEM x8ServoState[] = {0,GD*-3,0,0,GD*5,0,0,0,0,0};
//Left-right walking sets ---

const int GSD = gaitSideAngle/10; //GD = Gait side division, simmilar
to above
const int16_p PROGMEM y1ServoState[] = {0,0,GSD*-1,0,0,GSD*-5,0,0,0,0};
const int16_p PROGMEM y2ServoState[] = {0,0,GSD*1,0,0,GSD*5,0,0,0,0};
const int16_p PROGMEM y3ServoState[] = {0,0,GSD*3,0,0,GSD*5,0,0,0,0};
const int16_p PROGMEM y4ServoState[] = {0,0,GSD*5,0,0,GSD*3,0,0,0,0};
const int16_p PROGMEM y5ServoState[] = {0,0,GSD*5,0,0,GSD*1,0,0,0,0};
const int16_p PROGMEM y6ServoState[] = {0,0,GSD*-5,0,0,GSD*-1,0,0,0,0};
const int16_p PROGMEM y7ServoState[] = {0,0,GSD*-5,0,0,GSD*-3,0,0,0,0};
const int16_p PROGMEM y8ServoState[] = {0,0,GSD*-3,0,0,GSD*-5,0,0,0,0};
// --

//111
111
111
111111111111111111
// Constant parameters and various other variable definitions
222
222
2222222222222222222222

//Servo Numbers ---

const int16_p PROGMEM LKneeServo = 0;
const int16_p PROGMEM LHipServo = 1;
const int16_p PROGMEM LHipSideServo = 2;

Ryan Khoo Yeap Hong

82

const int16_p PROGMEM RKneeServo = 15;
const int16_p PROGMEM RHipServo = 14;
const int16_p PROGMEM RHipSideServo = 13;
const int16_p PROGMEM lookServo = 4;
const int16_p PROGMEM pitchServo = 5;
const int16_p PROGMEM rollServo = 6;
//the above in a set for utilisations in fucntions:
const int servoSet[] = {LKneeServo, LHipServo, LHipSideServo,
RKneeServo, RHipServo, RHipSideServo, lookServo, pitchServo,
rollServo};

//Calibration for centers of servos, i.e. neutral angular positions, -

--
const int16_p PROGMEM LKneeCenter = 100; //clockwise looking left
const int16_p PROGMEM LHipCenter = 88+2;
const int16_p PROGMEM LHipSideCenter = 90; //lowet, inner leg
const int16_p PROGMEM RKneeCenter = 165; //counterclockwise looking
left
const int16_p PROGMEM RHipCenter = 90-2;
const int16_p PROGMEM RHipSideCenter = 85;//Higher, leg goes towards
center line
const int16_p PROGMEM lookCenter = 93;//lower look right
const int16_p PROGMEM pitchCenter = 88;//lower for higher head
const int16_p PROGMEM rollCenter = 95;
//the above in a set for utilisations in fucntions:
const int servoCenter[] = { LKneeCenter, LHipCenter, LHipSideCenter,
RKneeCenter, RHipCenter, RHipSideCenter, lookCenter, pitchCenter,
rollCenter};// Servo centers in a set

//Movement ranges, maximum degrees of movement for each joint ---------

const int16_p PROGMEM LKneeRange = 50;//range of degrees of Left Knee
servo is +-60
const int16_p PROGMEM LHipRange = 50;
const int16_p PROGMEM LHipSideRange = 40;
const int16_p PROGMEM RKneeRange = -50;
const int16_p PROGMEM RHipRange = -50;
const int16_p PROGMEM RHipSideRange = -40;
const int16_p PROGMEM lookRange = 30;
const int16_p PROGMEM pitchRange = 30;
const int16_p PROGMEM rollRange = 35;
//the above in a set for utilisations in fucntions:
const int servoRange[] = {LKneeRange, LHipRange, LHipSideRange,
RKneeRange, RHipRange, RHipSideRange, lookRange, pitchRange,
rollRange};// Servo ranges in a set

//initial command state sent over bluetooth
int state = 0;

//needed for delayed set execution loop below
int timeOfLastLoop = 0;
//needed for delayed IMU measurement loop below
int timeOfLastIMU = 0;

Ryan Khoo Yeap Hong

83

float accAngleX, accAngleY, gyroAngleX, gyroAngleY, gyroAngleZ, yaw,
roll, pitch;
 float GyroX;
 float GyroY;
//needed for delayed ultrasonic measurement loop below, in microseconds
int updateDistance = 0; //is set to 1 when distance needs to be
updated.
int timeOfLastUltra = 0;
int ultraState = 0; //controls if the ultrasonic sensor is resting or
pulsing for 10 microseconds.
int distanceSensed; //global variable storing distance of obastacle
sensend by ultrasonic sensor, updates every 20 microseconds.

//temporary memory of its current position, for calculation of eased
servo movement to the new state
int oldSet[] = {0,0,0,0,0,0,0,0,0,1}; //old set starts with neutral
positions

//the "plate" of sets the code will need to "eat" one by one in the
loop every setDelay amount of time.
int pendingSet[maxDivisions+1][9];
 //pendingSet[maxDivisions][9] = 0; // This line is in setup, the
maxdivisions value in the set states how many "edible" sets are
currently being stored and can be "eaten"

//Set that generate step writes to
int generatedSet[10];

//variable to allow neutral position to be executed only once upon
entering neutral position
int enterNeutral = 1;

//Lookup table for fuzzy logic
const int16_p PROGMEM fuzzTable[51][51] = {
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34,
-34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -17, -
17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -

Ryan Khoo Yeap Hong

84

17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -17, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -34, -
34, -34, -33, -32, -31, -30, -28, -27, -26, -24, -23, -21, -20, -18, -
17, -16, -16, -15, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-33, -33, -33, -33, -33, -33, -33, -33, -33, -33, -33, -33, -33, -
33, -33, -33, -32, -31, -30, -28, -27, -25, -24, -23, -21, -20, -18, -
17, -16, -16, -15, -15, -14, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -14, -14},
 {-31, -31, -31, -31, -31, -31, -31, -31, -31, -31, -31, -31, -31, -
31, -31, -31, -31, -30, -29, -28, -26, -25, -23, -22, -21, -19, -18, -
17, -16, -15, -15, -14, -14, -14, -14, -14, -13, -13, -13, -13, -13, -
13, -13, -13, -13, -13, -13, -13, -13, -13, -13},
 {-29, -29, -29, -29, -29, -29, -29, -29, -29, -29, -29, -29, -29, -
29, -29, -29, -29, -29, -28, -27, -25, -24, -22, -21, -19, -18, -17, -
16, -15, -14, -14, -13, -13, -13, -13, -13, -12, -12, -12, -12, -12, -
12, -12, -12, -12, -12, -12, -12, -12, -12, -12},
 {-26, -26, -26, -26, -26, -26, -26, -26, -26, -26, -26, -26, -26, -
26, -26, -26, -26, -26, -26, -25, -24, -22, -21, -19, -18, -17, -15, -
14, -14, -13, -12, -12, -12, -12, -11, -11, -11, -11, -11, -11, -11, -
11, -11, -11, -11, -11, -11, -11, -11, -11, -11},
 {-23, -23, -23, -23, -23, -23, -23, -23, -23, -23, -23, -23, -23, -
23, -23, -23, -23, -23, -23, -23, -22, -21, -19, -18, -16, -15, -14, -

Ryan Khoo Yeap Hong

85

13, -12, -11, -11, -11, -10, -10, -10, -10, -10, -10, -10, -10, -10, -
10, -10, -10, -10, -10, -10, -10, -10, -10, -10},
 {-20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20, -
20, -20, -20, -20, -20, -20, -20, -20, -19, -17, -16, -15, -13, -12, -
11, -10, -10, -9, -9, -9, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -8, -
8, -8, -8, -8, -8, -8, -8},
 {-17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -17, -
17, -17, -17, -17, -17, -17, -17, -17, -17, -15, -14, -13, -11, -10, -
9, -8, -8, -7, -7, -7, -7, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6, -6,
-6, -6, -6, -6, -6, -6},
 {-14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -14, -
14, -14, -14, -14, -14, -14, -14, -14, -13, -13, -12, -10, -9, -8, -7,
-6, -5, -5, -5, -5, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
-4, -4, -4, -4, -4},
 {-11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -11, -
11, -11, -11, -11, -10, -10, -10, -10, -10, -10, -9, -8, -6, -5, -4, -
4, -3, -3, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
-2, -2, -2, -2, -2},
 {-7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7,
-7, -7, -7, -7, -7, -6, -5, -5, -3, -2, -1, -1, -0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
 {-4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,
-4, -4, -4, -3, -3, -3, -2, -1, -0, 1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4},
 {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -0, -0, 0, 1, 1, 2, 3, 5, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7},
 {2, 3, 3, 4,
4, 5, 6, 8, 9, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11},
 {4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6,
7, 8, 9, 10, 12, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14},
 {6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8,
9, 10, 11, 13, 14, 15, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17},
 {8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 10,
10, 11, 12, 13, 15, 16, 17, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20},
 {10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 11, 11, 11, 12, 13, 14, 15, 16, 18, 19, 21, 22, 23, 23, 23, 23,
23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23},
 {11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
12, 12, 12, 12, 13, 14, 14, 15, 17, 18, 19, 21, 22, 24, 25, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26},
 {12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13,
13, 13, 13, 14, 14, 15, 16, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29},
 {13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14,
14, 14, 14, 15, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 28, 29, 30, 31,
31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31},
 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 15, 15, 16, 16, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 32,
33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33},

Ryan Khoo Yeap Hong

86

 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 15, 15, 15, 16, 16, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32,
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32,
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32,
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32,
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32,
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32,
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32,
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32,
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32,
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32,
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32,
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32,
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32,
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32,
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
 {14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 15, 15, 15, 16, 17, 17, 18, 20, 21, 23, 24, 26, 27, 28, 30, 31, 32,
33, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34},
 };

//222
222
222
2222222222
// Predefined Functions and calculations
333
333
33333333333333333333333333

Ryan Khoo Yeap Hong

87

//Servodriver Pulse calculations --------------------------------------

int anglePulse (int angle){
 int Pulse = map(angle, 0, 180, 110, 400);
 return Pulse;
//, MIN pulse = 110, Max pulse = 610, pulse to 180*= 400
}

//executePosition function, Write position dataset to servos ----------

void executePosition(int pendingSetIndex){
 //Serial.println(F("executed positions"));
 for (int i=0; i<9; i++){
 int writeDegree = map(pendingSet[pendingSetIndex][i], -100, 100, (-
servoRange[i]+servoCenter[i]), (servoRange[i]+servoCenter[i])); //maps
the -100 to 100 input to the maximum and minimums of each servo
 pwm.setPWM(servoSet[i], 0, anglePulse(writeDegree));
 //Serial.println(pendingSet[pendingSetIndex][i]);

 }
}

//Assume position function --

//generates a new array of arrays into pendingSet that the loop will
work through, Nature determines how the movement is performed, either
Linear (0) or sine-eased (1)
void assumePosition(int newSet[], int nature){
 //One servo number at a time
//Serial.println("assumePosition() started");

//set of values to be added to pending sets once generated
 int transitionArray[9][maxDivisions] ;
 int divisions = newSet[9]; //the 9th value in a servo set is the time
value

 for (int servoNumber = 0; servoNumber<9;servoNumber++){

 //First, Multiplier array is made depending on the nature selected
 float multiplierArray[maxDivisions];
 int oldValue = oldSet[servoNumber];
 int newValue = newSet[servoNumber];
 float increment = 0;

 //Generate Multiplier Array
++
 if (nature == 0){//Linear movement, constant speed
 increment = (1.0 / divisions);

 for (int i = 0; i < divisions ; i++){
 float multiplier = increment * (i+1);
 multiplierArray[i] = multiplier;
 }

Ryan Khoo Yeap Hong

88

 }
 if (nature == 1){//Sin movement, deccelerate
 increment = (1.570796 / divisions);

 for (int i = 0; i < divisions ; i++){
 float multiplier = sin(increment * (i+1));
 multiplierArray[i] = multiplier;
 }
 }
 if (nature == 2){//Cos movement, accelerate
 increment = (1.570796 / divisions);

 for (int i = 0; i < divisions ; i++){
 float multiplier = (cos((increment * (i+1))+ 3.1415926)) + 1;
 multiplierArray[i] = multiplier;
 }
 } // Multiplier array now generated
+++

 //make column of values for current servo it is calculating
 for (int i = 0; i < divisions ; i++){

 int value = oldValue + ((newValue-oldValue)*multiplierArray[i]);
 transitionArray[servoNumber][i] = value;
 }
 }// end of respective servo number loop

//write to pending sets from transition array, transposing matrix
 for (int i = 0; i < divisions ; i++){
 for (int s = 0; s < 9 ; s++){
 pendingSet[divisions-i-1][s] = transitionArray[s][i];
 //Serial.println(pendingSet[divisions-i-1][s]);
 }
 //Serial.print("one pending set added at index: ");
 //Serial.println(divisions-i-1);
 }
pendingSet[maxDivisions][8] = divisions;//tell pending set how many
things there are to "eat"

//make oldSet = newSet
 for (int i=0; i<9; i++){
 oldSet[i] = newSet[i];
 }

} // end of assume position function

//Step Direction Combining --

//takes all 3 sets and their modifiers/weightages and updates
"generatedSet" to be the new set to be written
void generateSet(int set1[] , int set1Mod , int set2[] , int set2Mod
,int set3[] , int set3Mod){
 // 10 values to combine and output, modifiers are 0-100,

Ryan Khoo Yeap Hong

89

 for (int i=0; i<9; i++){
 int newValue = (set1[i]*set1Mod) + (set2[i]*set2Mod) +
(set3[i]*set3Mod);
 generatedSet[i] = newValue / 100;
 }
 generatedSet[9] = set1[9];

// for (int i=0; i<10; i++){
// Serial.print(outputSet[i]);
// Serial.print(", ");
// }
// Serial.println(" ");

}

//333
333
333
333333333333
//444
444
44

//Setup
void setup() {
 Serial.println(F("Void Setup Begin."));
 Serial.begin(9600);

 pwm.begin();//ServoDriver Required
 pwm.setPWMFreq(60); // This is the maximum PWM frequency
 yield();

 //Wait for IMU to initialise
 if (!icm.begin_I2C()) {
 Serial.println(F("Failed to locate ICM20948 chip"));
 while (1) {
 delay(10);
 }
 }
 icm_gyro = icm.getGyroSensor(); //Initialise Gyro
 icm_mag = icm.getMagnetometerSensor(); //Initialise Magnetometer
 icm_accel = icm.getAccelerometerSensor();

 pinMode(10, OUTPUT); //ultrasonic sensor pin initialisation
 pinMode(11, INPUT);

 int bufferSet[10];
 for (int i=0; i<10; i++){ bufferSet[i] = neutralServoState[i]; }
 assumePosition(bufferSet, 1);
 cycleStage = mode; // Primes cycle stage to begin, starts with
dynamic neutral stage 9

Ryan Khoo Yeap Hong

90

 delay(3000); //3 seconds to place robot on surface before IMU takes
calibration data of "flat surface"

} //end of setup

//444
444
444
44444444444
//555
555
55
// Void Loop
void loop() {

//Serial.print("cycleStage: "); Serial.print(cycleStage);
Serial.print(", xMod:"); Serial.print(xMod); Serial.print(", yMod:");
Serial.println(yMod);

 //Serial.println();
 //check controller command data
 //Read Command
 if(Serial.available() > 0){ // Checks whether data is coming from the
serial port
 state = Serial.read(); // Reads the data from the serial port
 //Serial.print("Bluetooth: "); Serial.println(state);
 }

 int currentTime = millis();
 //int timeOfLastIMU = 0; this line is in section 222222

 //Start of ultrasonic sensor --

 if (updateDistance == 1){
 int microsecs = micros(); //micros utilised to avoid using
delayMicroseconds()
 int timeSinceLastUltra = microsecs - timeOfLastUltra;
 if (timeSinceLastUltra >= 10){ //this if function runs every 10
microseconds
 if (ultraState == 0){ //turn on pulse
 digitalWrite(10, HIGH);
 ultraState = 1;
 }
 if (ultraState == 1){ //turns off pulse and records duration,
returns distance
 digitalWrite(10, LOW);
 int duration = pulseIn(11, HIGH);
 distanceSensed = duration * 0.034 / 2;
 //Serial.println(distanceSensed);
 ultraState = 0;
 }
 }
 updateDistance = 0;
 } //End of ultrasonic sensor --

Ryan Khoo Yeap Hong

91

 //Start of IMU

 int timeSinceLastIMU = currentTime - timeOfLastIMU;
 if (timeSinceLastIMU > IMUDelay - 1){ // Start of delayed IMU loop,
be=ased on IMU delay
 //Obtain updated IMU readings
 sensors_event_t gyro;
 sensors_event_t mag;
 sensors_event_t accel;
 icm_gyro->getEvent(&gyro);
 icm_mag->getEvent(&mag);
 icm_accel->getEvent(&accel);

 float AccX = accel.acceleration.x;
 float AccY = accel.acceleration.y;
 float AccZ = accel.acceleration.z;
 float MagX = mag.magnetic.x;
 float MagY = mag.magnetic.y;
 float MagZ = mag.magnetic.z;
 GyroX = (gyro.gyro.x *57.3) +1.45;// convert to Deg/s, account for
error. 1.45, these 2 are declared above
 GyroY = (gyro.gyro.y *57.3) -0.19;
 float GyroZ = (gyro.gyro.z *57.3) ;
 // float roll, pitch; in variables

 //Calculate position from acceleraometer data
 accAngleX = (atan(AccY / sqrt(pow(AccX, 2) + pow(AccZ, 2))) * 180 /
PI) +2.4; //error of 2.4
 accAngleY = (atan(-1 * AccX / sqrt(pow(AccY, 2) + pow(AccZ, 2))) *
180 / PI) -2.4;

 //Calculate position from Gyro data
 float elapsedTime = (timeSinceLastIMU / 1000.0);

 gyroAngleX = gyroAngleX + GyroX * elapsedTime; // deg/s * s = deg
 gyroAngleY = gyroAngleY + GyroY * elapsedTime;
 yaw = yaw + GyroZ * elapsedTime;

 //Combine data for more accurate positiining w/out drift
 pitch = 0.96 * gyroAngleX + 0.04 * accAngleX;
 roll = 0.96 * gyroAngleY + 0.04 * accAngleY;

 //Serial print X and Y positioning
 //Serial.print(pitch);Serial.print(", ");
// Serial.print(roll);
// Serial.println();

 timeOfLastIMU = currentTime;
 }//end of delayed IMU loop --

//end of IMU

Ryan Khoo Yeap Hong

92

//Produce Direction Information, Xmod and Ymod based on 3 inputs:
ultrasonic sensor data, IMU/fuzzy logic, and control info
%%

//First, map IMU outputs to fuzzy logic Crisp inputs.
//Filter IMU data to avoid spikes/bumpiness from walking
filteredPitch.Filter(pitch); //angle varies +-20
filteredRoll.Filter(roll); //angle varies +-20
filteredAngVelX.Filter(GyroX); // +-100
filteredAngVelY.Filter(GyroY); // +-100

//Map extremes of value into fuzzy logic crisp input table, update
depending on size of lookup table
int crispAngX = map(filteredPitch.Current() , -20,20,0,51);
int crispAngY = map(filteredRoll.Current() , -20,20,0,51);
int crispAngVelX = map(filteredAngVelX.Current() , -100,100,0,51);
int crispAngVelY = map(filteredAngVelY.Current() , -100,100,0,51);

// Serial.print(GyroY);Serial.print(", ");
// Serial.print(filteredAngVelY.Current());
// Serial.println();

//extract data from look-up table to get fuzzXmod and fuzzYmod
int fuzzXmod;
int fuzzYmod;
if(crispAngX < 50 && crispAngX > 0 && crispAngY < 50 && crispAngY > 0
&& crispAngVelX < 50 && crispAngVelX > 0 && crispAngVelY < 50 &&
crispAngVelY > 0){ //if statment to ensure values are within the
bounds of lookuptable and does not extract random data from ram
fuzzXmod = fuzzTable[crispAngX][crispAngVelX];
fuzzYmod = fuzzTable[crispAngY][crispAngVelY];
}

//extract data from ultrasonic sensor
int obstacleMod;
if (distanceSensed < 20){
 obstacleMod = -20 ; //if less than 20cm, nudge backwards
}
if (distanceSensed >= 20){
 obstacleMod = 0 ;
}

//extract data from remote controller
int controllerModX = 0;
int controllerModY = 0;
int controllerModXA = 0;
int controllerModXB = 0;
int controllerModYA = 0;
int controllerModYB = 0;
if (state >= 10 && state <= 19){ //front
 int frontState = state - 10;
 controllerModXA = frontState*3; //adds a maximum nudge of 30 to mod
 }

Ryan Khoo Yeap Hong

93

if (state >= 50 && state <= 59){ //back
 int backState = state - 50;
 controllerModXB = -backState*3; //adds a maximum nudge of -30 to
mod
 }
if (state >= 30 && state <= 39){ //right
 int rightState = state - 30;
 controllerModYA = rightState*3; //adds a maximum nudge of 30 to mod
 }
if (state >= 70 && state <= 79){ //left
 int leftState = state - 70;
 controllerModYB = -leftState*3; //adds a maximum nudge of -30 to
mod
 }
 controllerModX = controllerModXA + controllerModXB;
 controllerModY = controllerModYA + controllerModYB;

//Serial.print("ControllerModX:
");Serial.print(controllerModX);Serial.print(" ControllerModY:
");Serial.println(controllerModY);

//combine modifiers according to predetermined weights

xMod = (fuzzXmod*fuzzWeight*2 + controllerModX*controllerWeight +
obstacleMod*100)/100;
yMod = (fuzzYmod*fuzzWeight*2 + controllerModY*controllerWeight)/100;

//Xmod and Ymod found
%%%
%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

// Stand at neutral:
 if (cycleStage == 20 && pendingSet[maxDivisions][8] == 0){
 if (enterNeutral == 1){
 //extract set from PROGMEM into buffer set
 int bufferSet[10];
 for (int i=0; i<10; i++){ bufferSet[i] = startServoState[i]; }
 assumePosition(bufferSet, 0);
 enterNeutral = 0;
 }
 }
// Test State position:
 if (cycleStage == 30 && pendingSet[maxDivisions][8] == 0){

 //extract set from PROGMEM into buffer set
 int bufferSet[10];
 for (int i=0; i<10; i++){ bufferSet[i] = testServoState[i]; }

 assumePosition(bufferSet, 0);
 }

Ryan Khoo Yeap Hong

94

////first time initialisation loop ------------------------------------

//int cycleStage == 10 this is in changeable variables
 if (cycleStage == 10 && pendingSet[maxDivisions][8] == 0){
 //extract set from PROGMEM into buffer set
 int bufferSet[10];
 for (int i=0; i<10; i++){ bufferSet[i] = minServoState[i]; }
 assumePosition(bufferSet, 2);
 cycleStage = 11;
 }
 if (cycleStage == 11 && pendingSet[maxDivisions][8] == 0){
//extract set from PROGMEM into buffer set
 int bufferSet[10];
 for (int i=0; i<10; i++){ bufferSet[i] = maxServoState[i]; }
 assumePosition(bufferSet, 0);
 cycleStage = 12;
 }
 if (cycleStage == 12 && pendingSet[maxDivisions][8] == 0){
//extract set from PROGMEM into buffer set
 int bufferSet[10];
 for (int i=0; i<10; i++){ bufferSet[i] = neutralServoState[i]; }
 assumePosition(bufferSet, 1);
 cycleStage = 1; // Primes cycle stage to begin
 }
////end of first time initialisation ----------------------------------

//555
555
555
555
555
//666
666
666
666
66

//CYCLE STAGES
+++
+++

//Dynamic Neutral, stands still when modifiers are low

if (cycleStage == 9 && (not(xMod < stillThreshold && xMod > -
stillThreshold) || not(yMod < stillThreshold && yMod > -
stillThreshold)) && pendingSet[maxDivisions][8] == 0) { //break out of
neutral (stage 9)
 cycleStage = 2; //moves rightfoot first
 enterNeutral = 1;
}

Ryan Khoo Yeap Hong

95

if ((xMod < stillThreshold && xMod > -stillThreshold) && (yMod <
stillThreshold && yMod > -stillThreshold) &&
pendingSet[maxDivisions][8] == 0){ //forced into neutral
 cycleStage = 9;
 updateDistance = 1; //take distance measurements when stationary

 //only write neutral positions once upon entering neutral
 //int enterNeutral = 0; //this is in pre setup
 if (enterNeutral == 1){
//extract set from PROGMEM into buffer set
 int bufferSet[10];
 for (int i=0; i<10; i++){ bufferSet[i] = neutralServoState[i]; }
 assumePosition(bufferSet, 1);
 enterNeutral = 0; // prevents constant writing of neutral position
during rest
 }
 }

//Normal cycle stages
+++
+++

 if (cycleStage == 1 && pendingSet[maxDivisions][8] == 0){
 updateDistance = 1; //enables the ultrasonic sensor to obtain a
distance reading.
 setDelay = setDelayX; //makes setdelayX the chosen variable above
instead of slower initialisation variable.
 state = 0;// reset bluetooth data state

 //Extract sets from PROGMEM into SRAM buffersets
 int bufferSetA[10];
 for (int i=0; i<10; i++){ bufferSetA[i] = empty1ServoState[i]; }

 int bufferSetB[10];
 for (int i=0; i<10; i++){ bufferSetB[i] = x1ServoState[i]; }

 int bufferSetC[10];
 for (int i=0; i<10; i++){ bufferSetC[i] = y1ServoState[i]; }

 generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC,
yMod);
 assumePosition(generatedSet, 0);
 cycleStage = 2;
 }
 if (cycleStage == 2 && pendingSet[maxDivisions][8] == 0){
 //Extract sets from PROGMEM into SRAM buffersets
 int bufferSetA[10];
 for (int i=0; i<10; i++){ bufferSetA[i] = empty2ServoState[i]; }

 int bufferSetB[10];
 for (int i=0; i<10; i++){ bufferSetB[i] = x2ServoState[i]; }

 int bufferSetC[10];
 for (int i=0; i<10; i++){ bufferSetC[i] = y2ServoState[i]; }

Ryan Khoo Yeap Hong

96

 generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC,
yMod);
 assumePosition(generatedSet, 0);
 cycleStage = 3;
 }
 if (cycleStage == 3 && pendingSet[maxDivisions][8] == 0){
 //Extract sets from PROGMEM into SRAM buffersets
 int bufferSetA[10];
 for (int i=0; i<10; i++){ bufferSetA[i] = empty3ServoState[i]; }

 int bufferSetB[10];
 for (int i=0; i<10; i++){ bufferSetB[i] = x3ServoState[i]; }

 int bufferSetC[10];
 for (int i=0; i<10; i++){ bufferSetC[i] = y3ServoState[i]; }
 generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC,
yMod);
 assumePosition(generatedSet, 0);
 cycleStage = 4;
 }
 if (cycleStage == 4 && pendingSet[maxDivisions][8] == 0){
 state = 0;// reset bluetooth data state
//Extract sets from PROGMEM into SRAM buffersets
 int bufferSetA[10];
 for (int i=0; i<10; i++){ bufferSetA[i] = empty4ServoState[i]; }

 int bufferSetB[10];
 for (int i=0; i<10; i++){ bufferSetB[i] = x4ServoState[i]; }

 int bufferSetC[10];
 for (int i=0; i<10; i++){ bufferSetC[i] = y4ServoState[i]; }

 generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC,
yMod);
 assumePosition(generatedSet, 0);
 cycleStage = 5;
 }
 if (cycleStage == 5 && pendingSet[maxDivisions][8] == 0){
//Extract sets from PROGMEM into SRAM buffersets
 int bufferSetA[10];
 for (int i=0; i<10; i++){ bufferSetA[i] = empty5ServoState[i]; }

 int bufferSetB[10];
 for (int i=0; i<10; i++){ bufferSetB[i] = x5ServoState[i]; }

 int bufferSetC[10];
 for (int i=0; i<10; i++){ bufferSetC[i] = y5ServoState[i]; }

 generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC,
yMod);
 assumePosition(generatedSet, 0);
 cycleStage = 6;
 }
if (cycleStage == 6 && pendingSet[maxDivisions][8] == 0){
//Extract sets from PROGMEM into SRAM buffersets
 int bufferSetA[10];

Ryan Khoo Yeap Hong

97

 for (int i=0; i<10; i++){ bufferSetA[i] = empty6ServoState[i]; }

 int bufferSetB[10];
 for (int i=0; i<10; i++){ bufferSetB[i] = x6ServoState[i]; }

 int bufferSetC[10];
 for (int i=0; i<10; i++){ bufferSetC[i] = y6ServoState[i]; }
 generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC,
yMod);
 assumePosition(generatedSet, 0);
 cycleStage = 7;
 }
 if (cycleStage == 7 && pendingSet[maxDivisions][8] == 0){
//Extract sets from PROGMEM into SRAM buffersets
 int bufferSetA[10];
 for (int i=0; i<10; i++){ bufferSetA[i] = empty7ServoState[i]; }

 int bufferSetB[10];
 for (int i=0; i<10; i++){ bufferSetB[i] = x7ServoState[i]; }

 int bufferSetC[10];
 for (int i=0; i<10; i++){ bufferSetC[i] = y7ServoState[i]; }

 generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC,
yMod);
 assumePosition(generatedSet, 0);
 cycleStage = 8;
 }

 if (cycleStage == 8 && pendingSet[maxDivisions][8] == 0){
 //Extract sets from PROGMEM into SRAM buffersets
 int bufferSetA[10];
 for (int i=0; i<10; i++){ bufferSetA[i] = empty8ServoState[i]; }

 int bufferSetB[10];
 for (int i=0; i<10; i++){ bufferSetB[i] = x8ServoState[i]; }

 int bufferSetC[10];
 for (int i=0; i<10; i++){ bufferSetC[i] = y8ServoState[i]; }
 generateSet(bufferSetA, emptyMod, bufferSetB, xMod, bufferSetC,
yMod);
 assumePosition(generatedSet, 0);
 cycleStage = 1;
 }
//END OF CYCLE STAGE
+++
//666
666
66
//777
777
777

//delayed code loop, code below only occurs once every setDelay()
milliseconds to execute "edible" sets ---------------------------------

Ryan Khoo Yeap Hong

98

 //int currentTime = millis(); Already above
 //int timeOfLastLoop = 0; this line is in section 222222

 int timeSinceLastLoop = currentTime - timeOfLastLoop;

//Code that "eats" and executes from the pending set
 if (timeSinceLastLoop > setDelay -1){

 int availableSets = pendingSet[maxDivisions][8];// available set
determines both the number of sets inpending sets to be executed, and
the index of that set to be used (-1 because of zero indexing)
 if (availableSets != 0){
 executePosition(availableSets-1); //takes the most right-side
non-zero set and executes it
 //RYAN, you may need to delete the set that has been "eaten"
(15/3/22), nope, not needed (1/4/22)
 pendingSet[maxDivisions][8] = (pendingSet[maxDivisions][8]) - 1 ;
//number of "edible" sets now decreased by 1
// Serial.print("delayed loop ran, and pending sets = ");
// Serial.println(pendingSet[maxDivisions][8]);
// Serial.print("executed position in pendingSets indexed at: ");
// Serial.println((availableSets-1));

 } // end of if statement that eats pending set

 timeOfLastLoop = currentTime;
 }//end of delayed loop --

//Manual Pitch Control---

//RYAN add that this can only occur if pavo is in stationary mode and
break out of it back to normal balancing if it gets too unbalance while
playing with it
//manual pitch control
 if (state >= 110 && state <= 119){
 int pitchState = state - 110;
 int pitchDegree = map(pitchState, 9,0, (-
pitchRange+pitchCenter),(pitchRange+pitchCenter));
 pwm.setPWM(pitchServo, 0, anglePulse(pitchDegree));

 }
//Manual Roll Control
 if (state >= 120 && state <= 129 && cycleStage == 9){
 int rollState = state - 120;
 int rollDegree = map(rollState, 0,9, (-
rollRange+rollCenter),(rollRange+rollCenter));
 pwm.setPWM(rollServo, 0, anglePulse(rollDegree));
 }
 //Manual look Control
 if (state >= 130 && state <= 139 && cycleStage == 9){

Ryan Khoo Yeap Hong

99

 int lookState = state - 130;
 int lookDegree = map(lookState, 0,9, (-
lookRange+lookCenter),(lookRange+lookCenter));
 pwm.setPWM(lookServo, 0, anglePulse(lookDegree));
 }
 //--

} // End of Void Loop

// ___________ .===.
// /-=(o=`.
// | ,__.-"``
// __________ _/ : /
// _..--""` : /
// .-" : ' : |
// __________ ." : : ;
// ." : : /
// _,.-" : . : /
// `---'=-.,_;` ' ,='
// `:=-=.=-'====,_
// _________ //` `\\
// //
// // run Pavo run
// `\=

Ryan Khoo Yeap Hong

100

A.9 Engineering Assembly Drawings
(Full resolution A3 drawings found on page 102 and 103, omit these for A4 printing)

Ryan Khoo Yeap Hong

101

 32.50

 90.00
 102.57

 41.37

1

2

3

 114.75

 120.00

 125.00

A

DETAIL A (Internal View)

4

5

RYAN KHOO

RYAN KHOO

4/2022 1:1

N/A N/AThrid Year
Individual Project

Dr Suleiman
Sharkh

School of Engineering/

Mechanical EngineeringN/A
"PAVO" Bluetooth Controller

2 1 2 1 A

NO. PART QTY.
1 TOP HOUSING 1
2 BOTTOM HOUSING 1

3 NUNCHUCK
CONTROLLER 1

4 AA BATTERY
HOLDER 1

5 ARDUINO UNO 1

No OFF REVISIONDRAWING NUMBERASSEMBLY NUMBERSHEET

TITLE

Southampton
UNIVERSITY OF

Faculty of Engineering and the Environment

THE INFORMATION CONTAINED IN THIS DOCUMENT IS
THE PROPERTY OF THE UNIVERSITY OF SOUTHAMPTON

DO NOT COPY WITHOUT WRITTEN PERMISSION.

SURFACE FINISHTEXTUREMATERIALSUPERVISORPROJECT

IF IN DOUBT PLEASE ASK

REMOVE ALL SHARP EDGES

TOLERANCES UNLESS
OTHERWISE STATED

DRAWN BY

DESIGNED BY

DATE SCALEDEPARTMENTEDMC JOB No

DO NOT SCALE

ALL DIMENSIONS IN mm UNLESS
OTHERWISE STATED

A3

ALL OVER UNLESS
OTHERWISE STATED

LINEAR DIMENSIONS
X = +/- 0.5mm
X.X = +/- 0.25mm
X.XX = +/- 0.1mm

ANGULAR DIMENSIONS
X = +/- 0.5mm
X.X = +/- 0.25mm

SOLIDWORKS Educational Product. For Instructional Use Only.

 309.91

 212.84

A

14

14
12

17

16
111819

13

7

 442.65

6
5

1717

2626

1

1

1

1

1

1

1

21

88

22

24

23

25

20

15

DETAIL A
SCALE 1 : 2

4

2

9

10

11

3 Ryan Khoo

Ryan Khoo

4/2022

"PAVO" Bipedal Robot
1:4

Thrid Year
Individual Project

Dr Suleiman
Sharkh N/A N/A

B1 1 1 1

N/A School of Engineering/
Mechanical Engineering

NO. PART QTY.
1 SER0056 Servos 9
2 HC-SR04 Ultrasonic Sensor 1
3 Arduino Uno 1
4 HC-05 Bluetooth Module 1
5 ICM-20948 9-DoF IMU 1
6 Adafruit 16-Channel 12-bit PWM

Servo Driver 1
7 AA Battery Holder 1
8 75mm RC Damper Suspension 2
9 Face Plate 1
10 Head Comb Wire Rail/Stabiliser 1
11 Kneck Base/Arduino Mount 1
12 Spine Joint 1
13 Tail/Battery Mount 1
14 5mm Threaded Rod (23cm) 2
15 Spine Tilt/Pitch 1
16 Spine Swivel 1
17 90 Degree Servo Joint 3
18 Wire guide 1
19 Main Hip 1
20 Right Foot 1
21 Left Foot 1
22 Right Upper Foot 1
23 Left Upper Foot 1
24 Right Shin 1
25 Left Shin 1
26 Laser-cut Acrylic Thigh 2

No OFF REVISIONDRAWING NUMBERASSEMBLY NUMBERSHEET

TITLE

Southampton
UNIVERSITY OF

Faculty of Engineering and the Environment

THE INFORMATION CONTAINED IN THIS DOCUMENT IS
THE PROPERTY OF THE UNIVERSITY OF SOUTHAMPTON

DO NOT COPY WITHOUT WRITTEN PERMISSION.

SURFACE FINISHTEXTUREMATERIALSUPERVISORPROJECT

IF IN DOUBT PLEASE ASK

REMOVE ALL SHARP EDGES

TOLERANCES UNLESS
OTHERWISE STATED

DRAWN BY

DESIGNED BY

DATE SCALEDEPARTMENTEDMC JOB No

DO NOT SCALE

ALL DIMENSIONS IN mm UNLESS
OTHERWISE STATED

A3

ALL OVER UNLESS
OTHERWISE STATED

LINEAR DIMENSIONS
X = +/- 0.5mm
X.X = +/- 0.25mm
X.XX = +/- 0.1mm

ANGULAR DIMENSIONS
X = +/- 0.5mm
X.X = +/- 0.25mm

SOLIDWORKS Educational Product. For Instructional Use Only.

