# Fowl, Fuzzy Logic and Frugality:

## A Better approach to Bipedal Robots.

192 AM



#### Motivation & Aims

**Robots** that move are **vital** for many modern processes. However, many of these robots are **limited** to specialised environments designed around them. A better approach may be **robots** designed around **existing environments** instead. As most environments are already designed around bipedal humans, **bipedal robots** are uniquely poised to fill this niche.

Existing bipeds are **expensive**, **computationally intensive** and inherently **unstable**. This report **aims** to address these issues and develop a **small**, **upgradable** robot capable of semi-autonomous **walking**.

### Design

Birds began walking on two legs over **150 million** years before us, studies show that the lower centres of mass resulting from the "couched" build of birds **improve stability** over upright human configurations.

- The robot (Pavo) is designed from the measurements of a **European Quail** at a scale of 2.5:1 and mimics its **low centre of mass** (see Fig. 1)
- Pavo is 3D printed and laser-cut, it utilises cost-effective off-the-shelf parts to achieve all the joints required for walking within £200

#### **Control**

- Cost-effective Arduino boards are used to control Pavo
- Pavo can be wirelessly controlled over Bluetooth
- An experimentally obtained quail gait cycle (Fig. 2) is broken into discrete states and coded into the Arduino memory
- Pavo uses the stored footstep cycles to walk in the direction of a fall to prevent falling, an onboard inertial measurement unit (IMU) enables this
- Traditional control methods are computationally expensive, intuitive Fuzzy logic is utilised to off-load these calculations onto a computer
- Pavo takes into account: balance, obstacles and user input to decide how to move



Obstacle Sensing

Viser Input

X & Y

Direction

Balancing Fuzzy Logic

Position Data

State Clock
1 Rest state
9

Stored Footstep
Cycle Data

Footsteps Produced!

Fig. 3: A diagrammatic representation of how the control theory functions



Fig. 1: An X-ray of a walking quail and Pavo (Nyakatura et al., 2011)

#### Results

After code refinements and the addition of an elastic system that reduced servo torque requirements, Pavo was **successfully** able to:

- Combine the fragmented footstep states into a controlled, cohesive gait cycle
- Respond appropriately to angular positions/accelerations and return to rest when in balance
- Begin backwards movement upon sensing an obstacle
- Receive wireless directional user input from the controller
- Walk forward at an average speed of 30mm/s

### **Conclusion and Future Work**

- The low centre of mass improved stability
- The control theory was implemented successfully
- Underpowered servos resulted in reduced footstep capacity
- Low Arduino RAM and clock speeds limited code function

Many aspects that could be **further developed** were identified:

- Upgrading hardware (i.e. servos, power solutions and processors)
- Improving rigidity and reducing weight without sacrificing size/functionality
- The Fuzzy logic and gait cycle could be further refined to better mimic that found in nature

#### References:

- Abourachid, A., Hackert, R., Herbin, M., Libourel, P. A., Lambert, F., Gioanni, H., Provini, P., Blazevic, P., & Hugel, V. (2011).
   Bird terrestrial locomotion as revealed by 3D kinematics. Zoology, 114(6), 360–368.
   https://doi.org/10.1016/J.ZOOL.2011.07.002
- Nyakatura, J. A., Andrada, E., Blickhan, R., Blickhan, R., & Fischer, M. S. (2011). Avian bipedal locomotion. https://www.researchgate.net/publication/233757966





